Ionic-surfactant-mediated electro-dewetting for digital microfluidics

The ability to manipulate droplets on a substrate using electric signals 1 —known as digital microfluidics—is used in optical 2 , 3 , biomedical 4 , 5 , thermal 6 and electronic 7 applications and has led to commercially available liquid lenses 8 and diagnostics kits 9 , 10 . Such electrical actuati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature (London) 2019-08, Vol.572 (7770), p.507-510
Hauptverfasser: Li, Jia, Ha, Noel S., Liu, Tingyi ‘Leo’, van Dam, R. Michael, ‘CJ’ Kim, Chang-Jin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 510
container_issue 7770
container_start_page 507
container_title Nature (London)
container_volume 572
creator Li, Jia
Ha, Noel S.
Liu, Tingyi ‘Leo’
van Dam, R. Michael
‘CJ’ Kim, Chang-Jin
description The ability to manipulate droplets on a substrate using electric signals 1 —known as digital microfluidics—is used in optical 2 , 3 , biomedical 4 , 5 , thermal 6 and electronic 7 applications and has led to commercially available liquid lenses 8 and diagnostics kits 9 , 10 . Such electrical actuation is mainly achieved by electrowetting, with droplets attracted towards and spreading on a conductive substrate in response to an applied voltage. To ensure strong and practical actuation, the substrate is covered with a dielectric layer and a hydrophobic topcoat for electrowetting-on-dielectric (EWOD) 11-13 ; this increases the actuation voltage (to about 100 volts) and can compromise reliability owing to dielectric breakdown 14 , electric charging 15 and biofouling 16 . Here we demonstrate droplet manipulation that uses electrical signals to induce the liquid to dewet, rather than wet, a hydrophilic conductive substrate without the need for added layers. In this electrodewetting mechanism, which is phenomenologically opposite to electrowetting, the liquid–substrate interaction is not controlled directly by electric field but instead by field-induced attachment and detachment of ionic surfactants to the substrate. We show that this actuation mechanism can perform all the basic fluidic operations of digital microfluidics using water on doped silicon wafers in air, with only ±2.5 volts of driving voltage, a few microamperes of current and about 0.015 times the critical micelle concentration of an ionic surfactant. The system can also handle common buffers and organic solvents, promising a simple and reliable microfluidic platform for a broad range of applications. A method of droplet manipulation is described that uses electrical signals to induce the liquid to dewet, rather than wet, a hydrophilic conductive surface.
doi_str_mv 10.1038/s41586-019-1491-x
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2328352419</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A597078835</galeid><sourcerecordid>A597078835</sourcerecordid><originalsourceid>FETCH-LOGICAL-c677t-76f6b14e3371ec24e9fd33a3fedbdbde407a48ffb383e83ec3ccd3a4b0915d783</originalsourceid><addsrcrecordid>eNp10mFr1DAYB_AgijunH8A3crg3DslMmrRJXx7HnAdDQSe-DGnypGT00luS4vntzXHTeXIjhUL7e_6E5I_Qa0ouKGHyQ-K0lg0mtMWUtxRvn6AZ5aLBvJHiKZoRUklMJGtO0IuUbgkhNRX8OTphlLOa1HKGLldj8AanKTptsg4Zr8F6ncHOYQCT44gt_IScfejnboxz63uf9TBfexNHN0zeepNeomdODwle3b9P0fePlzfLT_j6y9VqubjGphEiY9G4pqMcGBMUTMWhdZYxzRzYrizgRGguneuYZFAew4yxTPOOtLS2QrJT9G6fu4nj3QQpq7VPBoZBBxinpCpWSVZXnLaFnv1Hb8cphrI7VVWS8Jo3lD2oXg-gfHBjjtrsQtWibgURsuQVhY-oHgJEPYwBnC-fD_zbI95s_J36F10cQWVZKGd7NPX8YKCYDNvc6ykltfr29dC-f9wubn4sPx9qutflSlOK4NQm-rWOvxQlatc0tW-aKk1Tu6apbZl5c3--U1cq83fiT7UKqPYglV-hh_hwAY-n_gZIP9qT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2280454613</pqid></control><display><type>article</type><title>Ionic-surfactant-mediated electro-dewetting for digital microfluidics</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><creator>Li, Jia ; Ha, Noel S. ; Liu, Tingyi ‘Leo’ ; van Dam, R. Michael ; ‘CJ’ Kim, Chang-Jin</creator><creatorcontrib>Li, Jia ; Ha, Noel S. ; Liu, Tingyi ‘Leo’ ; van Dam, R. Michael ; ‘CJ’ Kim, Chang-Jin</creatorcontrib><description>The ability to manipulate droplets on a substrate using electric signals 1 —known as digital microfluidics—is used in optical 2 , 3 , biomedical 4 , 5 , thermal 6 and electronic 7 applications and has led to commercially available liquid lenses 8 and diagnostics kits 9 , 10 . Such electrical actuation is mainly achieved by electrowetting, with droplets attracted towards and spreading on a conductive substrate in response to an applied voltage. To ensure strong and practical actuation, the substrate is covered with a dielectric layer and a hydrophobic topcoat for electrowetting-on-dielectric (EWOD) 11-13 ; this increases the actuation voltage (to about 100 volts) and can compromise reliability owing to dielectric breakdown 14 , electric charging 15 and biofouling 16 . Here we demonstrate droplet manipulation that uses electrical signals to induce the liquid to dewet, rather than wet, a hydrophilic conductive substrate without the need for added layers. In this electrodewetting mechanism, which is phenomenologically opposite to electrowetting, the liquid–substrate interaction is not controlled directly by electric field but instead by field-induced attachment and detachment of ionic surfactants to the substrate. We show that this actuation mechanism can perform all the basic fluidic operations of digital microfluidics using water on doped silicon wafers in air, with only ±2.5 volts of driving voltage, a few microamperes of current and about 0.015 times the critical micelle concentration of an ionic surfactant. The system can also handle common buffers and organic solvents, promising a simple and reliable microfluidic platform for a broad range of applications. A method of droplet manipulation is described that uses electrical signals to induce the liquid to dewet, rather than wet, a hydrophilic conductive surface.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-019-1491-x</identifier><identifier>PMID: 31435058</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/62 ; 14/19 ; 14/34 ; 142/126 ; 639/166 ; 639/166/988 ; Acetonitriles - chemistry ; Actuation ; Analysis ; Biofouling ; Buffers ; Contact angle ; Dielectric breakdown ; Dielectric strength ; Dimethyl Sulfoxide - chemistry ; Droplets ; Drying ; Electric fields ; Electric potential ; Electrowetting - methods ; Ethylene Glycol - chemistry ; Humanities and Social Sciences ; Hydrophobic and Hydrophilic Interactions ; Hydrophobicity ; Influence ; Ionic solutions ; Ionic surface active agents ; Ions - chemistry ; Letter ; Methods ; Micelles ; Microfluidics ; Microfluidics - instrumentation ; Microfluidics - methods ; multidisciplinary ; Organic solvents ; Science ; Science (multidisciplinary) ; Semiconductors ; Silicon - chemistry ; Silicon wafers ; Substrates ; Surface active agents ; Surface-Active Agents - chemistry ; Surfactants ; Technology application ; Voltage ; Wetting</subject><ispartof>Nature (London), 2019-08, Vol.572 (7770), p.507-510</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2019</rights><rights>COPYRIGHT 2019 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Aug 22, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c677t-76f6b14e3371ec24e9fd33a3fedbdbde407a48ffb383e83ec3ccd3a4b0915d783</citedby><cites>FETCH-LOGICAL-c677t-76f6b14e3371ec24e9fd33a3fedbdbde407a48ffb383e83ec3ccd3a4b0915d783</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41586-019-1491-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41586-019-1491-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31435058$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Jia</creatorcontrib><creatorcontrib>Ha, Noel S.</creatorcontrib><creatorcontrib>Liu, Tingyi ‘Leo’</creatorcontrib><creatorcontrib>van Dam, R. Michael</creatorcontrib><creatorcontrib>‘CJ’ Kim, Chang-Jin</creatorcontrib><title>Ionic-surfactant-mediated electro-dewetting for digital microfluidics</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>The ability to manipulate droplets on a substrate using electric signals 1 —known as digital microfluidics—is used in optical 2 , 3 , biomedical 4 , 5 , thermal 6 and electronic 7 applications and has led to commercially available liquid lenses 8 and diagnostics kits 9 , 10 . Such electrical actuation is mainly achieved by electrowetting, with droplets attracted towards and spreading on a conductive substrate in response to an applied voltage. To ensure strong and practical actuation, the substrate is covered with a dielectric layer and a hydrophobic topcoat for electrowetting-on-dielectric (EWOD) 11-13 ; this increases the actuation voltage (to about 100 volts) and can compromise reliability owing to dielectric breakdown 14 , electric charging 15 and biofouling 16 . Here we demonstrate droplet manipulation that uses electrical signals to induce the liquid to dewet, rather than wet, a hydrophilic conductive substrate without the need for added layers. In this electrodewetting mechanism, which is phenomenologically opposite to electrowetting, the liquid–substrate interaction is not controlled directly by electric field but instead by field-induced attachment and detachment of ionic surfactants to the substrate. We show that this actuation mechanism can perform all the basic fluidic operations of digital microfluidics using water on doped silicon wafers in air, with only ±2.5 volts of driving voltage, a few microamperes of current and about 0.015 times the critical micelle concentration of an ionic surfactant. The system can also handle common buffers and organic solvents, promising a simple and reliable microfluidic platform for a broad range of applications. A method of droplet manipulation is described that uses electrical signals to induce the liquid to dewet, rather than wet, a hydrophilic conductive surface.</description><subject>13/62</subject><subject>14/19</subject><subject>14/34</subject><subject>142/126</subject><subject>639/166</subject><subject>639/166/988</subject><subject>Acetonitriles - chemistry</subject><subject>Actuation</subject><subject>Analysis</subject><subject>Biofouling</subject><subject>Buffers</subject><subject>Contact angle</subject><subject>Dielectric breakdown</subject><subject>Dielectric strength</subject><subject>Dimethyl Sulfoxide - chemistry</subject><subject>Droplets</subject><subject>Drying</subject><subject>Electric fields</subject><subject>Electric potential</subject><subject>Electrowetting - methods</subject><subject>Ethylene Glycol - chemistry</subject><subject>Humanities and Social Sciences</subject><subject>Hydrophobic and Hydrophilic Interactions</subject><subject>Hydrophobicity</subject><subject>Influence</subject><subject>Ionic solutions</subject><subject>Ionic surface active agents</subject><subject>Ions - chemistry</subject><subject>Letter</subject><subject>Methods</subject><subject>Micelles</subject><subject>Microfluidics</subject><subject>Microfluidics - instrumentation</subject><subject>Microfluidics - methods</subject><subject>multidisciplinary</subject><subject>Organic solvents</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Semiconductors</subject><subject>Silicon - chemistry</subject><subject>Silicon wafers</subject><subject>Substrates</subject><subject>Surface active agents</subject><subject>Surface-Active Agents - chemistry</subject><subject>Surfactants</subject><subject>Technology application</subject><subject>Voltage</subject><subject>Wetting</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp10mFr1DAYB_AgijunH8A3crg3DslMmrRJXx7HnAdDQSe-DGnypGT00luS4vntzXHTeXIjhUL7e_6E5I_Qa0ouKGHyQ-K0lg0mtMWUtxRvn6AZ5aLBvJHiKZoRUklMJGtO0IuUbgkhNRX8OTphlLOa1HKGLldj8AanKTptsg4Zr8F6ncHOYQCT44gt_IScfejnboxz63uf9TBfexNHN0zeepNeomdODwle3b9P0fePlzfLT_j6y9VqubjGphEiY9G4pqMcGBMUTMWhdZYxzRzYrizgRGguneuYZFAew4yxTPOOtLS2QrJT9G6fu4nj3QQpq7VPBoZBBxinpCpWSVZXnLaFnv1Hb8cphrI7VVWS8Jo3lD2oXg-gfHBjjtrsQtWibgURsuQVhY-oHgJEPYwBnC-fD_zbI95s_J36F10cQWVZKGd7NPX8YKCYDNvc6ykltfr29dC-f9wubn4sPx9qutflSlOK4NQm-rWOvxQlatc0tW-aKk1Tu6apbZl5c3--U1cq83fiT7UKqPYglV-hh_hwAY-n_gZIP9qT</recordid><startdate>201908</startdate><enddate>201908</enddate><creator>Li, Jia</creator><creator>Ha, Noel S.</creator><creator>Liu, Tingyi ‘Leo’</creator><creator>van Dam, R. Michael</creator><creator>‘CJ’ Kim, Chang-Jin</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ATWCN</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7X8</scope></search><sort><creationdate>201908</creationdate><title>Ionic-surfactant-mediated electro-dewetting for digital microfluidics</title><author>Li, Jia ; Ha, Noel S. ; Liu, Tingyi ‘Leo’ ; van Dam, R. Michael ; ‘CJ’ Kim, Chang-Jin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c677t-76f6b14e3371ec24e9fd33a3fedbdbde407a48ffb383e83ec3ccd3a4b0915d783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>13/62</topic><topic>14/19</topic><topic>14/34</topic><topic>142/126</topic><topic>639/166</topic><topic>639/166/988</topic><topic>Acetonitriles - chemistry</topic><topic>Actuation</topic><topic>Analysis</topic><topic>Biofouling</topic><topic>Buffers</topic><topic>Contact angle</topic><topic>Dielectric breakdown</topic><topic>Dielectric strength</topic><topic>Dimethyl Sulfoxide - chemistry</topic><topic>Droplets</topic><topic>Drying</topic><topic>Electric fields</topic><topic>Electric potential</topic><topic>Electrowetting - methods</topic><topic>Ethylene Glycol - chemistry</topic><topic>Humanities and Social Sciences</topic><topic>Hydrophobic and Hydrophilic Interactions</topic><topic>Hydrophobicity</topic><topic>Influence</topic><topic>Ionic solutions</topic><topic>Ionic surface active agents</topic><topic>Ions - chemistry</topic><topic>Letter</topic><topic>Methods</topic><topic>Micelles</topic><topic>Microfluidics</topic><topic>Microfluidics - instrumentation</topic><topic>Microfluidics - methods</topic><topic>multidisciplinary</topic><topic>Organic solvents</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Semiconductors</topic><topic>Silicon - chemistry</topic><topic>Silicon wafers</topic><topic>Substrates</topic><topic>Surface active agents</topic><topic>Surface-Active Agents - chemistry</topic><topic>Surfactants</topic><topic>Technology application</topic><topic>Voltage</topic><topic>Wetting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Jia</creatorcontrib><creatorcontrib>Ha, Noel S.</creatorcontrib><creatorcontrib>Liu, Tingyi ‘Leo’</creatorcontrib><creatorcontrib>van Dam, R. Michael</creatorcontrib><creatorcontrib>‘CJ’ Kim, Chang-Jin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Middle School</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Jia</au><au>Ha, Noel S.</au><au>Liu, Tingyi ‘Leo’</au><au>van Dam, R. Michael</au><au>‘CJ’ Kim, Chang-Jin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ionic-surfactant-mediated electro-dewetting for digital microfluidics</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2019-08</date><risdate>2019</risdate><volume>572</volume><issue>7770</issue><spage>507</spage><epage>510</epage><pages>507-510</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><abstract>The ability to manipulate droplets on a substrate using electric signals 1 —known as digital microfluidics—is used in optical 2 , 3 , biomedical 4 , 5 , thermal 6 and electronic 7 applications and has led to commercially available liquid lenses 8 and diagnostics kits 9 , 10 . Such electrical actuation is mainly achieved by electrowetting, with droplets attracted towards and spreading on a conductive substrate in response to an applied voltage. To ensure strong and practical actuation, the substrate is covered with a dielectric layer and a hydrophobic topcoat for electrowetting-on-dielectric (EWOD) 11-13 ; this increases the actuation voltage (to about 100 volts) and can compromise reliability owing to dielectric breakdown 14 , electric charging 15 and biofouling 16 . Here we demonstrate droplet manipulation that uses electrical signals to induce the liquid to dewet, rather than wet, a hydrophilic conductive substrate without the need for added layers. In this electrodewetting mechanism, which is phenomenologically opposite to electrowetting, the liquid–substrate interaction is not controlled directly by electric field but instead by field-induced attachment and detachment of ionic surfactants to the substrate. We show that this actuation mechanism can perform all the basic fluidic operations of digital microfluidics using water on doped silicon wafers in air, with only ±2.5 volts of driving voltage, a few microamperes of current and about 0.015 times the critical micelle concentration of an ionic surfactant. The system can also handle common buffers and organic solvents, promising a simple and reliable microfluidic platform for a broad range of applications. A method of droplet manipulation is described that uses electrical signals to induce the liquid to dewet, rather than wet, a hydrophilic conductive surface.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31435058</pmid><doi>10.1038/s41586-019-1491-x</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0028-0836
ispartof Nature (London), 2019-08, Vol.572 (7770), p.507-510
issn 0028-0836
1476-4687
language eng
recordid cdi_proquest_miscellaneous_2328352419
source MEDLINE; Springer Nature - Complete Springer Journals; Nature Journals Online
subjects 13/62
14/19
14/34
142/126
639/166
639/166/988
Acetonitriles - chemistry
Actuation
Analysis
Biofouling
Buffers
Contact angle
Dielectric breakdown
Dielectric strength
Dimethyl Sulfoxide - chemistry
Droplets
Drying
Electric fields
Electric potential
Electrowetting - methods
Ethylene Glycol - chemistry
Humanities and Social Sciences
Hydrophobic and Hydrophilic Interactions
Hydrophobicity
Influence
Ionic solutions
Ionic surface active agents
Ions - chemistry
Letter
Methods
Micelles
Microfluidics
Microfluidics - instrumentation
Microfluidics - methods
multidisciplinary
Organic solvents
Science
Science (multidisciplinary)
Semiconductors
Silicon - chemistry
Silicon wafers
Substrates
Surface active agents
Surface-Active Agents - chemistry
Surfactants
Technology application
Voltage
Wetting
title Ionic-surfactant-mediated electro-dewetting for digital microfluidics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T16%3A01%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ionic-surfactant-mediated%20electro-dewetting%20for%20digital%20microfluidics&rft.jtitle=Nature%20(London)&rft.au=Li,%20Jia&rft.date=2019-08&rft.volume=572&rft.issue=7770&rft.spage=507&rft.epage=510&rft.pages=507-510&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-019-1491-x&rft_dat=%3Cgale_proqu%3EA597078835%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2280454613&rft_id=info:pmid/31435058&rft_galeid=A597078835&rfr_iscdi=true