Ionic-surfactant-mediated electro-dewetting for digital microfluidics
The ability to manipulate droplets on a substrate using electric signals 1 —known as digital microfluidics—is used in optical 2 , 3 , biomedical 4 , 5 , thermal 6 and electronic 7 applications and has led to commercially available liquid lenses 8 and diagnostics kits 9 , 10 . Such electrical actuati...
Gespeichert in:
Veröffentlicht in: | Nature (London) 2019-08, Vol.572 (7770), p.507-510 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 510 |
---|---|
container_issue | 7770 |
container_start_page | 507 |
container_title | Nature (London) |
container_volume | 572 |
creator | Li, Jia Ha, Noel S. Liu, Tingyi ‘Leo’ van Dam, R. Michael ‘CJ’ Kim, Chang-Jin |
description | The ability to manipulate droplets on a substrate using electric signals
1
—known as digital microfluidics—is used in optical
2
,
3
, biomedical
4
,
5
, thermal
6
and electronic
7
applications and has led to commercially available liquid lenses
8
and diagnostics kits
9
,
10
. Such electrical actuation is mainly achieved by electrowetting, with droplets attracted towards and spreading on a conductive substrate in response to an applied voltage. To ensure strong and practical actuation, the substrate is covered with a dielectric layer and a hydrophobic topcoat for electrowetting-on-dielectric (EWOD)
11-13
; this increases the actuation voltage (to about 100 volts) and can compromise reliability owing to dielectric breakdown
14
, electric charging
15
and biofouling
16
. Here we demonstrate droplet manipulation that uses electrical signals to induce the liquid to dewet, rather than wet, a hydrophilic conductive substrate without the need for added layers. In this electrodewetting mechanism, which is phenomenologically opposite to electrowetting, the liquid–substrate interaction is not controlled directly by electric field but instead by field-induced attachment and detachment of ionic surfactants to the substrate. We show that this actuation mechanism can perform all the basic fluidic operations of digital microfluidics using water on doped silicon wafers in air, with only ±2.5 volts of driving voltage, a few microamperes of current and about 0.015 times the critical micelle concentration of an ionic surfactant. The system can also handle common buffers and organic solvents, promising a simple and reliable microfluidic platform for a broad range of applications.
A method of droplet manipulation is described that uses electrical signals to induce the liquid to dewet, rather than wet, a hydrophilic conductive surface. |
doi_str_mv | 10.1038/s41586-019-1491-x |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2328352419</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A597078835</galeid><sourcerecordid>A597078835</sourcerecordid><originalsourceid>FETCH-LOGICAL-c677t-76f6b14e3371ec24e9fd33a3fedbdbde407a48ffb383e83ec3ccd3a4b0915d783</originalsourceid><addsrcrecordid>eNp10mFr1DAYB_AgijunH8A3crg3DslMmrRJXx7HnAdDQSe-DGnypGT00luS4vntzXHTeXIjhUL7e_6E5I_Qa0ouKGHyQ-K0lg0mtMWUtxRvn6AZ5aLBvJHiKZoRUklMJGtO0IuUbgkhNRX8OTphlLOa1HKGLldj8AanKTptsg4Zr8F6ncHOYQCT44gt_IScfejnboxz63uf9TBfexNHN0zeepNeomdODwle3b9P0fePlzfLT_j6y9VqubjGphEiY9G4pqMcGBMUTMWhdZYxzRzYrizgRGguneuYZFAew4yxTPOOtLS2QrJT9G6fu4nj3QQpq7VPBoZBBxinpCpWSVZXnLaFnv1Hb8cphrI7VVWS8Jo3lD2oXg-gfHBjjtrsQtWibgURsuQVhY-oHgJEPYwBnC-fD_zbI95s_J36F10cQWVZKGd7NPX8YKCYDNvc6ykltfr29dC-f9wubn4sPx9qutflSlOK4NQm-rWOvxQlatc0tW-aKk1Tu6apbZl5c3--U1cq83fiT7UKqPYglV-hh_hwAY-n_gZIP9qT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2280454613</pqid></control><display><type>article</type><title>Ionic-surfactant-mediated electro-dewetting for digital microfluidics</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><creator>Li, Jia ; Ha, Noel S. ; Liu, Tingyi ‘Leo’ ; van Dam, R. Michael ; ‘CJ’ Kim, Chang-Jin</creator><creatorcontrib>Li, Jia ; Ha, Noel S. ; Liu, Tingyi ‘Leo’ ; van Dam, R. Michael ; ‘CJ’ Kim, Chang-Jin</creatorcontrib><description>The ability to manipulate droplets on a substrate using electric signals
1
—known as digital microfluidics—is used in optical
2
,
3
, biomedical
4
,
5
, thermal
6
and electronic
7
applications and has led to commercially available liquid lenses
8
and diagnostics kits
9
,
10
. Such electrical actuation is mainly achieved by electrowetting, with droplets attracted towards and spreading on a conductive substrate in response to an applied voltage. To ensure strong and practical actuation, the substrate is covered with a dielectric layer and a hydrophobic topcoat for electrowetting-on-dielectric (EWOD)
11-13
; this increases the actuation voltage (to about 100 volts) and can compromise reliability owing to dielectric breakdown
14
, electric charging
15
and biofouling
16
. Here we demonstrate droplet manipulation that uses electrical signals to induce the liquid to dewet, rather than wet, a hydrophilic conductive substrate without the need for added layers. In this electrodewetting mechanism, which is phenomenologically opposite to electrowetting, the liquid–substrate interaction is not controlled directly by electric field but instead by field-induced attachment and detachment of ionic surfactants to the substrate. We show that this actuation mechanism can perform all the basic fluidic operations of digital microfluidics using water on doped silicon wafers in air, with only ±2.5 volts of driving voltage, a few microamperes of current and about 0.015 times the critical micelle concentration of an ionic surfactant. The system can also handle common buffers and organic solvents, promising a simple and reliable microfluidic platform for a broad range of applications.
A method of droplet manipulation is described that uses electrical signals to induce the liquid to dewet, rather than wet, a hydrophilic conductive surface.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-019-1491-x</identifier><identifier>PMID: 31435058</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/62 ; 14/19 ; 14/34 ; 142/126 ; 639/166 ; 639/166/988 ; Acetonitriles - chemistry ; Actuation ; Analysis ; Biofouling ; Buffers ; Contact angle ; Dielectric breakdown ; Dielectric strength ; Dimethyl Sulfoxide - chemistry ; Droplets ; Drying ; Electric fields ; Electric potential ; Electrowetting - methods ; Ethylene Glycol - chemistry ; Humanities and Social Sciences ; Hydrophobic and Hydrophilic Interactions ; Hydrophobicity ; Influence ; Ionic solutions ; Ionic surface active agents ; Ions - chemistry ; Letter ; Methods ; Micelles ; Microfluidics ; Microfluidics - instrumentation ; Microfluidics - methods ; multidisciplinary ; Organic solvents ; Science ; Science (multidisciplinary) ; Semiconductors ; Silicon - chemistry ; Silicon wafers ; Substrates ; Surface active agents ; Surface-Active Agents - chemistry ; Surfactants ; Technology application ; Voltage ; Wetting</subject><ispartof>Nature (London), 2019-08, Vol.572 (7770), p.507-510</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2019</rights><rights>COPYRIGHT 2019 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Aug 22, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c677t-76f6b14e3371ec24e9fd33a3fedbdbde407a48ffb383e83ec3ccd3a4b0915d783</citedby><cites>FETCH-LOGICAL-c677t-76f6b14e3371ec24e9fd33a3fedbdbde407a48ffb383e83ec3ccd3a4b0915d783</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41586-019-1491-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41586-019-1491-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31435058$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Jia</creatorcontrib><creatorcontrib>Ha, Noel S.</creatorcontrib><creatorcontrib>Liu, Tingyi ‘Leo’</creatorcontrib><creatorcontrib>van Dam, R. Michael</creatorcontrib><creatorcontrib>‘CJ’ Kim, Chang-Jin</creatorcontrib><title>Ionic-surfactant-mediated electro-dewetting for digital microfluidics</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>The ability to manipulate droplets on a substrate using electric signals
1
—known as digital microfluidics—is used in optical
2
,
3
, biomedical
4
,
5
, thermal
6
and electronic
7
applications and has led to commercially available liquid lenses
8
and diagnostics kits
9
,
10
. Such electrical actuation is mainly achieved by electrowetting, with droplets attracted towards and spreading on a conductive substrate in response to an applied voltage. To ensure strong and practical actuation, the substrate is covered with a dielectric layer and a hydrophobic topcoat for electrowetting-on-dielectric (EWOD)
11-13
; this increases the actuation voltage (to about 100 volts) and can compromise reliability owing to dielectric breakdown
14
, electric charging
15
and biofouling
16
. Here we demonstrate droplet manipulation that uses electrical signals to induce the liquid to dewet, rather than wet, a hydrophilic conductive substrate without the need for added layers. In this electrodewetting mechanism, which is phenomenologically opposite to electrowetting, the liquid–substrate interaction is not controlled directly by electric field but instead by field-induced attachment and detachment of ionic surfactants to the substrate. We show that this actuation mechanism can perform all the basic fluidic operations of digital microfluidics using water on doped silicon wafers in air, with only ±2.5 volts of driving voltage, a few microamperes of current and about 0.015 times the critical micelle concentration of an ionic surfactant. The system can also handle common buffers and organic solvents, promising a simple and reliable microfluidic platform for a broad range of applications.
A method of droplet manipulation is described that uses electrical signals to induce the liquid to dewet, rather than wet, a hydrophilic conductive surface.</description><subject>13/62</subject><subject>14/19</subject><subject>14/34</subject><subject>142/126</subject><subject>639/166</subject><subject>639/166/988</subject><subject>Acetonitriles - chemistry</subject><subject>Actuation</subject><subject>Analysis</subject><subject>Biofouling</subject><subject>Buffers</subject><subject>Contact angle</subject><subject>Dielectric breakdown</subject><subject>Dielectric strength</subject><subject>Dimethyl Sulfoxide - chemistry</subject><subject>Droplets</subject><subject>Drying</subject><subject>Electric fields</subject><subject>Electric potential</subject><subject>Electrowetting - methods</subject><subject>Ethylene Glycol - chemistry</subject><subject>Humanities and Social Sciences</subject><subject>Hydrophobic and Hydrophilic Interactions</subject><subject>Hydrophobicity</subject><subject>Influence</subject><subject>Ionic solutions</subject><subject>Ionic surface active agents</subject><subject>Ions - chemistry</subject><subject>Letter</subject><subject>Methods</subject><subject>Micelles</subject><subject>Microfluidics</subject><subject>Microfluidics - instrumentation</subject><subject>Microfluidics - methods</subject><subject>multidisciplinary</subject><subject>Organic solvents</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Semiconductors</subject><subject>Silicon - chemistry</subject><subject>Silicon wafers</subject><subject>Substrates</subject><subject>Surface active agents</subject><subject>Surface-Active Agents - chemistry</subject><subject>Surfactants</subject><subject>Technology application</subject><subject>Voltage</subject><subject>Wetting</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp10mFr1DAYB_AgijunH8A3crg3DslMmrRJXx7HnAdDQSe-DGnypGT00luS4vntzXHTeXIjhUL7e_6E5I_Qa0ouKGHyQ-K0lg0mtMWUtxRvn6AZ5aLBvJHiKZoRUklMJGtO0IuUbgkhNRX8OTphlLOa1HKGLldj8AanKTptsg4Zr8F6ncHOYQCT44gt_IScfejnboxz63uf9TBfexNHN0zeepNeomdODwle3b9P0fePlzfLT_j6y9VqubjGphEiY9G4pqMcGBMUTMWhdZYxzRzYrizgRGguneuYZFAew4yxTPOOtLS2QrJT9G6fu4nj3QQpq7VPBoZBBxinpCpWSVZXnLaFnv1Hb8cphrI7VVWS8Jo3lD2oXg-gfHBjjtrsQtWibgURsuQVhY-oHgJEPYwBnC-fD_zbI95s_J36F10cQWVZKGd7NPX8YKCYDNvc6ykltfr29dC-f9wubn4sPx9qutflSlOK4NQm-rWOvxQlatc0tW-aKk1Tu6apbZl5c3--U1cq83fiT7UKqPYglV-hh_hwAY-n_gZIP9qT</recordid><startdate>201908</startdate><enddate>201908</enddate><creator>Li, Jia</creator><creator>Ha, Noel S.</creator><creator>Liu, Tingyi ‘Leo’</creator><creator>van Dam, R. Michael</creator><creator>‘CJ’ Kim, Chang-Jin</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ATWCN</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7X8</scope></search><sort><creationdate>201908</creationdate><title>Ionic-surfactant-mediated electro-dewetting for digital microfluidics</title><author>Li, Jia ; Ha, Noel S. ; Liu, Tingyi ‘Leo’ ; van Dam, R. Michael ; ‘CJ’ Kim, Chang-Jin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c677t-76f6b14e3371ec24e9fd33a3fedbdbde407a48ffb383e83ec3ccd3a4b0915d783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>13/62</topic><topic>14/19</topic><topic>14/34</topic><topic>142/126</topic><topic>639/166</topic><topic>639/166/988</topic><topic>Acetonitriles - chemistry</topic><topic>Actuation</topic><topic>Analysis</topic><topic>Biofouling</topic><topic>Buffers</topic><topic>Contact angle</topic><topic>Dielectric breakdown</topic><topic>Dielectric strength</topic><topic>Dimethyl Sulfoxide - chemistry</topic><topic>Droplets</topic><topic>Drying</topic><topic>Electric fields</topic><topic>Electric potential</topic><topic>Electrowetting - methods</topic><topic>Ethylene Glycol - chemistry</topic><topic>Humanities and Social Sciences</topic><topic>Hydrophobic and Hydrophilic Interactions</topic><topic>Hydrophobicity</topic><topic>Influence</topic><topic>Ionic solutions</topic><topic>Ionic surface active agents</topic><topic>Ions - chemistry</topic><topic>Letter</topic><topic>Methods</topic><topic>Micelles</topic><topic>Microfluidics</topic><topic>Microfluidics - instrumentation</topic><topic>Microfluidics - methods</topic><topic>multidisciplinary</topic><topic>Organic solvents</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Semiconductors</topic><topic>Silicon - chemistry</topic><topic>Silicon wafers</topic><topic>Substrates</topic><topic>Surface active agents</topic><topic>Surface-Active Agents - chemistry</topic><topic>Surfactants</topic><topic>Technology application</topic><topic>Voltage</topic><topic>Wetting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Jia</creatorcontrib><creatorcontrib>Ha, Noel S.</creatorcontrib><creatorcontrib>Liu, Tingyi ‘Leo’</creatorcontrib><creatorcontrib>van Dam, R. Michael</creatorcontrib><creatorcontrib>‘CJ’ Kim, Chang-Jin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Middle School</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Jia</au><au>Ha, Noel S.</au><au>Liu, Tingyi ‘Leo’</au><au>van Dam, R. Michael</au><au>‘CJ’ Kim, Chang-Jin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ionic-surfactant-mediated electro-dewetting for digital microfluidics</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2019-08</date><risdate>2019</risdate><volume>572</volume><issue>7770</issue><spage>507</spage><epage>510</epage><pages>507-510</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><abstract>The ability to manipulate droplets on a substrate using electric signals
1
—known as digital microfluidics—is used in optical
2
,
3
, biomedical
4
,
5
, thermal
6
and electronic
7
applications and has led to commercially available liquid lenses
8
and diagnostics kits
9
,
10
. Such electrical actuation is mainly achieved by electrowetting, with droplets attracted towards and spreading on a conductive substrate in response to an applied voltage. To ensure strong and practical actuation, the substrate is covered with a dielectric layer and a hydrophobic topcoat for electrowetting-on-dielectric (EWOD)
11-13
; this increases the actuation voltage (to about 100 volts) and can compromise reliability owing to dielectric breakdown
14
, electric charging
15
and biofouling
16
. Here we demonstrate droplet manipulation that uses electrical signals to induce the liquid to dewet, rather than wet, a hydrophilic conductive substrate without the need for added layers. In this electrodewetting mechanism, which is phenomenologically opposite to electrowetting, the liquid–substrate interaction is not controlled directly by electric field but instead by field-induced attachment and detachment of ionic surfactants to the substrate. We show that this actuation mechanism can perform all the basic fluidic operations of digital microfluidics using water on doped silicon wafers in air, with only ±2.5 volts of driving voltage, a few microamperes of current and about 0.015 times the critical micelle concentration of an ionic surfactant. The system can also handle common buffers and organic solvents, promising a simple and reliable microfluidic platform for a broad range of applications.
A method of droplet manipulation is described that uses electrical signals to induce the liquid to dewet, rather than wet, a hydrophilic conductive surface.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31435058</pmid><doi>10.1038/s41586-019-1491-x</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-0836 |
ispartof | Nature (London), 2019-08, Vol.572 (7770), p.507-510 |
issn | 0028-0836 1476-4687 |
language | eng |
recordid | cdi_proquest_miscellaneous_2328352419 |
source | MEDLINE; Springer Nature - Complete Springer Journals; Nature Journals Online |
subjects | 13/62 14/19 14/34 142/126 639/166 639/166/988 Acetonitriles - chemistry Actuation Analysis Biofouling Buffers Contact angle Dielectric breakdown Dielectric strength Dimethyl Sulfoxide - chemistry Droplets Drying Electric fields Electric potential Electrowetting - methods Ethylene Glycol - chemistry Humanities and Social Sciences Hydrophobic and Hydrophilic Interactions Hydrophobicity Influence Ionic solutions Ionic surface active agents Ions - chemistry Letter Methods Micelles Microfluidics Microfluidics - instrumentation Microfluidics - methods multidisciplinary Organic solvents Science Science (multidisciplinary) Semiconductors Silicon - chemistry Silicon wafers Substrates Surface active agents Surface-Active Agents - chemistry Surfactants Technology application Voltage Wetting |
title | Ionic-surfactant-mediated electro-dewetting for digital microfluidics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T16%3A01%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ionic-surfactant-mediated%20electro-dewetting%20for%20digital%20microfluidics&rft.jtitle=Nature%20(London)&rft.au=Li,%20Jia&rft.date=2019-08&rft.volume=572&rft.issue=7770&rft.spage=507&rft.epage=510&rft.pages=507-510&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-019-1491-x&rft_dat=%3Cgale_proqu%3EA597078835%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2280454613&rft_id=info:pmid/31435058&rft_galeid=A597078835&rfr_iscdi=true |