Phospholipids and cholesterol: Inducers of cancer multidrug resistance and therapeutic targets
Lipids, phospholipids and cholesterol in particular, are the predominant components of the plasma membrane, wherein multidrug efflux transporters of the ATP-binding cassette (ABC) superfamily reside as integral pump proteins. In the current review, we discuss how lipids potently modulate the express...
Gespeichert in:
Veröffentlicht in: | Drug resistance updates 2020-03, Vol.49, p.100670-100670, Article 100670 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 100670 |
---|---|
container_issue | |
container_start_page | 100670 |
container_title | Drug resistance updates |
container_volume | 49 |
creator | Kopecka, Joanna Trouillas, Patrick Gašparović, Ana Čipak Gazzano, Elena Assaraf, Yehuda G. Riganti, Chiara |
description | Lipids, phospholipids and cholesterol in particular, are the predominant components of the plasma membrane, wherein multidrug efflux transporters of the ATP-binding cassette (ABC) superfamily reside as integral pump proteins. In the current review, we discuss how lipids potently modulate the expression and activity of these multidrug efflux pumps, contributing to the development of the multidrug resistance (MDR) phenotype in cancer. The molecular mechanisms underlying this modulation of the MDR phenotype are pleiotropic. First, notwithstanding the high intra-and inter-tumor variability, MDR cells display an altered composition of plasma membrane phospholipids and glycosphingolipids, and are enriched with very long saturated fatty acid chains. This feature, along with the increased levels of cholesterol, decrease membrane fluidity, alter the spatial organization of membrane nano- and micro-domains, interact with transmembrane helices of ABC transporters, hence favoring drug binding and release. Second, MDR cells exhibit a peculiar membrane lipid composition of intracellular organelles including mitochondria and endoplasmic reticulum (ER). In this respect, they contain a lower amount of oxidizable fatty acids, hence being more resistant to oxidative stress and chemotherapy-induced apoptosis. Third, drug resistant cancer cells have a higher ratio of monosatured/polyunsatured fatty acids: this lipid signature reduces the production of reactive aldehydes with cytotoxic and pro-inflammatory activity and, together with the increased activity of anti-oxidant enzymes, limits the cellular damage induced by lipid peroxidation. Finally, specific precursors of phospholipids and cholesterol including ceramides and isoprenoids, are highly produced in MDR cells; by acting as second messengers, they trigger multiple signaling cascades that induce the transcription of drug efflux transporter genes and/or promote a metabolic reprogramming which supports the MDR phenotype.
High-throughput lipidomics and computational biology technologies are a great tool in analyzing the tumor lipid signature in a personalized manner and in identifying novel biomarkers of drug resistance. Moreover, beyond the induction of MDR, lipid metabolism offers a remarkable opportunity to reverse MDR by using lipid analogues and repurposing lipid-targeting drugs (e.g. statins and aminobisphosphonates) that reprogram the lipid composition of drug resistant cells, hence rendering them drug sensitive. |
doi_str_mv | 10.1016/j.drup.2019.100670 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2328351998</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1368764619300676</els_id><sourcerecordid>2328351998</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-8640169f92484d1be55e9617cc8088fedd2a5fe066160fba4aa71d1668f611623</originalsourceid><addsrcrecordid>eNp9kD9PwzAQxS0EolD4AgwoI0uKz3FcB7Ggij-VKsEAK5ZrX1pXaRNsB4lvj0sLI5PPp_fe3f0IuQA6AgriejWyvu9GjEKVGlSM6QE5gbJgOaOSH6a6EDIfCy4G5DSEFaUAvKqOyaAAyYUs5Al5f1m2oVu2jeucDZne2MykH4aIvm1usunG9gZ9yNo6M3qTymzdN9GlyYvMY3Ahbrs_xrhErzvsozNZ1H6BMZyRo1o3Ac_375C8Pdy_Tp7y2fPjdHI3yw2nNOZS8HRQVVeMS25hjmWJlYCxMZJKWaO1TJc1UiFA0HquudZjsCCErAWAYMWQXO1yO99-9Gl7tXbBYNPoDbZ9UKxgsiihqmSSsp3U-DYEj7XqvFtr_6WAqi1XtVJbrmrLVe24JtPlPr-fr9H-WX5BJsHtToDpyk-HXgXjMJGxzqOJyrbuv_xvIIaKTQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2328351998</pqid></control><display><type>article</type><title>Phospholipids and cholesterol: Inducers of cancer multidrug resistance and therapeutic targets</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Kopecka, Joanna ; Trouillas, Patrick ; Gašparović, Ana Čipak ; Gazzano, Elena ; Assaraf, Yehuda G. ; Riganti, Chiara</creator><creatorcontrib>Kopecka, Joanna ; Trouillas, Patrick ; Gašparović, Ana Čipak ; Gazzano, Elena ; Assaraf, Yehuda G. ; Riganti, Chiara</creatorcontrib><description>Lipids, phospholipids and cholesterol in particular, are the predominant components of the plasma membrane, wherein multidrug efflux transporters of the ATP-binding cassette (ABC) superfamily reside as integral pump proteins. In the current review, we discuss how lipids potently modulate the expression and activity of these multidrug efflux pumps, contributing to the development of the multidrug resistance (MDR) phenotype in cancer. The molecular mechanisms underlying this modulation of the MDR phenotype are pleiotropic. First, notwithstanding the high intra-and inter-tumor variability, MDR cells display an altered composition of plasma membrane phospholipids and glycosphingolipids, and are enriched with very long saturated fatty acid chains. This feature, along with the increased levels of cholesterol, decrease membrane fluidity, alter the spatial organization of membrane nano- and micro-domains, interact with transmembrane helices of ABC transporters, hence favoring drug binding and release. Second, MDR cells exhibit a peculiar membrane lipid composition of intracellular organelles including mitochondria and endoplasmic reticulum (ER). In this respect, they contain a lower amount of oxidizable fatty acids, hence being more resistant to oxidative stress and chemotherapy-induced apoptosis. Third, drug resistant cancer cells have a higher ratio of monosatured/polyunsatured fatty acids: this lipid signature reduces the production of reactive aldehydes with cytotoxic and pro-inflammatory activity and, together with the increased activity of anti-oxidant enzymes, limits the cellular damage induced by lipid peroxidation. Finally, specific precursors of phospholipids and cholesterol including ceramides and isoprenoids, are highly produced in MDR cells; by acting as second messengers, they trigger multiple signaling cascades that induce the transcription of drug efflux transporter genes and/or promote a metabolic reprogramming which supports the MDR phenotype.
High-throughput lipidomics and computational biology technologies are a great tool in analyzing the tumor lipid signature in a personalized manner and in identifying novel biomarkers of drug resistance. Moreover, beyond the induction of MDR, lipid metabolism offers a remarkable opportunity to reverse MDR by using lipid analogues and repurposing lipid-targeting drugs (e.g. statins and aminobisphosphonates) that reprogram the lipid composition of drug resistant cells, hence rendering them drug sensitive.</description><identifier>ISSN: 1368-7646</identifier><identifier>EISSN: 1532-2084</identifier><identifier>DOI: 10.1016/j.drup.2019.100670</identifier><identifier>PMID: 31846838</identifier><language>eng</language><publisher>Scotland: Elsevier Ltd</publisher><subject>Cholesterol ; Drug resistance ; Isoprenoids ; Lipid peroxidation ; MDR reversal ; Membrane fluidity ; Membranes ; Phospholipids</subject><ispartof>Drug resistance updates, 2020-03, Vol.49, p.100670-100670, Article 100670</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright © 2019 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-8640169f92484d1be55e9617cc8088fedd2a5fe066160fba4aa71d1668f611623</citedby><cites>FETCH-LOGICAL-c400t-8640169f92484d1be55e9617cc8088fedd2a5fe066160fba4aa71d1668f611623</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.drup.2019.100670$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27922,27923,45993</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31846838$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kopecka, Joanna</creatorcontrib><creatorcontrib>Trouillas, Patrick</creatorcontrib><creatorcontrib>Gašparović, Ana Čipak</creatorcontrib><creatorcontrib>Gazzano, Elena</creatorcontrib><creatorcontrib>Assaraf, Yehuda G.</creatorcontrib><creatorcontrib>Riganti, Chiara</creatorcontrib><title>Phospholipids and cholesterol: Inducers of cancer multidrug resistance and therapeutic targets</title><title>Drug resistance updates</title><addtitle>Drug Resist Updat</addtitle><description>Lipids, phospholipids and cholesterol in particular, are the predominant components of the plasma membrane, wherein multidrug efflux transporters of the ATP-binding cassette (ABC) superfamily reside as integral pump proteins. In the current review, we discuss how lipids potently modulate the expression and activity of these multidrug efflux pumps, contributing to the development of the multidrug resistance (MDR) phenotype in cancer. The molecular mechanisms underlying this modulation of the MDR phenotype are pleiotropic. First, notwithstanding the high intra-and inter-tumor variability, MDR cells display an altered composition of plasma membrane phospholipids and glycosphingolipids, and are enriched with very long saturated fatty acid chains. This feature, along with the increased levels of cholesterol, decrease membrane fluidity, alter the spatial organization of membrane nano- and micro-domains, interact with transmembrane helices of ABC transporters, hence favoring drug binding and release. Second, MDR cells exhibit a peculiar membrane lipid composition of intracellular organelles including mitochondria and endoplasmic reticulum (ER). In this respect, they contain a lower amount of oxidizable fatty acids, hence being more resistant to oxidative stress and chemotherapy-induced apoptosis. Third, drug resistant cancer cells have a higher ratio of monosatured/polyunsatured fatty acids: this lipid signature reduces the production of reactive aldehydes with cytotoxic and pro-inflammatory activity and, together with the increased activity of anti-oxidant enzymes, limits the cellular damage induced by lipid peroxidation. Finally, specific precursors of phospholipids and cholesterol including ceramides and isoprenoids, are highly produced in MDR cells; by acting as second messengers, they trigger multiple signaling cascades that induce the transcription of drug efflux transporter genes and/or promote a metabolic reprogramming which supports the MDR phenotype.
High-throughput lipidomics and computational biology technologies are a great tool in analyzing the tumor lipid signature in a personalized manner and in identifying novel biomarkers of drug resistance. Moreover, beyond the induction of MDR, lipid metabolism offers a remarkable opportunity to reverse MDR by using lipid analogues and repurposing lipid-targeting drugs (e.g. statins and aminobisphosphonates) that reprogram the lipid composition of drug resistant cells, hence rendering them drug sensitive.</description><subject>Cholesterol</subject><subject>Drug resistance</subject><subject>Isoprenoids</subject><subject>Lipid peroxidation</subject><subject>MDR reversal</subject><subject>Membrane fluidity</subject><subject>Membranes</subject><subject>Phospholipids</subject><issn>1368-7646</issn><issn>1532-2084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kD9PwzAQxS0EolD4AgwoI0uKz3FcB7Ggij-VKsEAK5ZrX1pXaRNsB4lvj0sLI5PPp_fe3f0IuQA6AgriejWyvu9GjEKVGlSM6QE5gbJgOaOSH6a6EDIfCy4G5DSEFaUAvKqOyaAAyYUs5Al5f1m2oVu2jeucDZne2MykH4aIvm1usunG9gZ9yNo6M3qTymzdN9GlyYvMY3Ahbrs_xrhErzvsozNZ1H6BMZyRo1o3Ac_375C8Pdy_Tp7y2fPjdHI3yw2nNOZS8HRQVVeMS25hjmWJlYCxMZJKWaO1TJc1UiFA0HquudZjsCCErAWAYMWQXO1yO99-9Gl7tXbBYNPoDbZ9UKxgsiihqmSSsp3U-DYEj7XqvFtr_6WAqi1XtVJbrmrLVe24JtPlPr-fr9H-WX5BJsHtToDpyk-HXgXjMJGxzqOJyrbuv_xvIIaKTQ</recordid><startdate>202003</startdate><enddate>202003</enddate><creator>Kopecka, Joanna</creator><creator>Trouillas, Patrick</creator><creator>Gašparović, Ana Čipak</creator><creator>Gazzano, Elena</creator><creator>Assaraf, Yehuda G.</creator><creator>Riganti, Chiara</creator><general>Elsevier Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>202003</creationdate><title>Phospholipids and cholesterol: Inducers of cancer multidrug resistance and therapeutic targets</title><author>Kopecka, Joanna ; Trouillas, Patrick ; Gašparović, Ana Čipak ; Gazzano, Elena ; Assaraf, Yehuda G. ; Riganti, Chiara</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-8640169f92484d1be55e9617cc8088fedd2a5fe066160fba4aa71d1668f611623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Cholesterol</topic><topic>Drug resistance</topic><topic>Isoprenoids</topic><topic>Lipid peroxidation</topic><topic>MDR reversal</topic><topic>Membrane fluidity</topic><topic>Membranes</topic><topic>Phospholipids</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kopecka, Joanna</creatorcontrib><creatorcontrib>Trouillas, Patrick</creatorcontrib><creatorcontrib>Gašparović, Ana Čipak</creatorcontrib><creatorcontrib>Gazzano, Elena</creatorcontrib><creatorcontrib>Assaraf, Yehuda G.</creatorcontrib><creatorcontrib>Riganti, Chiara</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Drug resistance updates</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kopecka, Joanna</au><au>Trouillas, Patrick</au><au>Gašparović, Ana Čipak</au><au>Gazzano, Elena</au><au>Assaraf, Yehuda G.</au><au>Riganti, Chiara</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phospholipids and cholesterol: Inducers of cancer multidrug resistance and therapeutic targets</atitle><jtitle>Drug resistance updates</jtitle><addtitle>Drug Resist Updat</addtitle><date>2020-03</date><risdate>2020</risdate><volume>49</volume><spage>100670</spage><epage>100670</epage><pages>100670-100670</pages><artnum>100670</artnum><issn>1368-7646</issn><eissn>1532-2084</eissn><abstract>Lipids, phospholipids and cholesterol in particular, are the predominant components of the plasma membrane, wherein multidrug efflux transporters of the ATP-binding cassette (ABC) superfamily reside as integral pump proteins. In the current review, we discuss how lipids potently modulate the expression and activity of these multidrug efflux pumps, contributing to the development of the multidrug resistance (MDR) phenotype in cancer. The molecular mechanisms underlying this modulation of the MDR phenotype are pleiotropic. First, notwithstanding the high intra-and inter-tumor variability, MDR cells display an altered composition of plasma membrane phospholipids and glycosphingolipids, and are enriched with very long saturated fatty acid chains. This feature, along with the increased levels of cholesterol, decrease membrane fluidity, alter the spatial organization of membrane nano- and micro-domains, interact with transmembrane helices of ABC transporters, hence favoring drug binding and release. Second, MDR cells exhibit a peculiar membrane lipid composition of intracellular organelles including mitochondria and endoplasmic reticulum (ER). In this respect, they contain a lower amount of oxidizable fatty acids, hence being more resistant to oxidative stress and chemotherapy-induced apoptosis. Third, drug resistant cancer cells have a higher ratio of monosatured/polyunsatured fatty acids: this lipid signature reduces the production of reactive aldehydes with cytotoxic and pro-inflammatory activity and, together with the increased activity of anti-oxidant enzymes, limits the cellular damage induced by lipid peroxidation. Finally, specific precursors of phospholipids and cholesterol including ceramides and isoprenoids, are highly produced in MDR cells; by acting as second messengers, they trigger multiple signaling cascades that induce the transcription of drug efflux transporter genes and/or promote a metabolic reprogramming which supports the MDR phenotype.
High-throughput lipidomics and computational biology technologies are a great tool in analyzing the tumor lipid signature in a personalized manner and in identifying novel biomarkers of drug resistance. Moreover, beyond the induction of MDR, lipid metabolism offers a remarkable opportunity to reverse MDR by using lipid analogues and repurposing lipid-targeting drugs (e.g. statins and aminobisphosphonates) that reprogram the lipid composition of drug resistant cells, hence rendering them drug sensitive.</abstract><cop>Scotland</cop><pub>Elsevier Ltd</pub><pmid>31846838</pmid><doi>10.1016/j.drup.2019.100670</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1368-7646 |
ispartof | Drug resistance updates, 2020-03, Vol.49, p.100670-100670, Article 100670 |
issn | 1368-7646 1532-2084 |
language | eng |
recordid | cdi_proquest_miscellaneous_2328351998 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Cholesterol Drug resistance Isoprenoids Lipid peroxidation MDR reversal Membrane fluidity Membranes Phospholipids |
title | Phospholipids and cholesterol: Inducers of cancer multidrug resistance and therapeutic targets |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T04%3A33%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phospholipids%20and%20cholesterol:%20Inducers%20of%20cancer%20multidrug%20resistance%20and%20therapeutic%20targets&rft.jtitle=Drug%20resistance%20updates&rft.au=Kopecka,%20Joanna&rft.date=2020-03&rft.volume=49&rft.spage=100670&rft.epage=100670&rft.pages=100670-100670&rft.artnum=100670&rft.issn=1368-7646&rft.eissn=1532-2084&rft_id=info:doi/10.1016/j.drup.2019.100670&rft_dat=%3Cproquest_cross%3E2328351998%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2328351998&rft_id=info:pmid/31846838&rft_els_id=S1368764619300676&rfr_iscdi=true |