Evaluating different spatial interpolation methods and modeling techniques for estimating spatial forest site index in pure beech forests: a case study from Turkey

Spatial interpolation methods are widely used to estimate some ecological and environmental parameters that are difficult to measure. One of these parameters is forest site index, which is a demonstration of forest productivity. The aim of this study was to estimate forest site index in a beech fore...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental monitoring and assessment 2020-01, Vol.192 (1), p.53-53, Article 53
Hauptverfasser: Günlü, Alkan, Bulut, Sinan, Keleş, Sedat, Ercanlı, İlker
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 53
container_issue 1
container_start_page 53
container_title Environmental monitoring and assessment
container_volume 192
creator Günlü, Alkan
Bulut, Sinan
Keleş, Sedat
Ercanlı, İlker
description Spatial interpolation methods are widely used to estimate some ecological and environmental parameters that are difficult to measure. One of these parameters is forest site index, which is a demonstration of forest productivity. The aim of this study was to estimate forest site index in a beech forest ecosystem in Turkey. In this context, soil characteristics, stand parameters, and topographic features were measured in 70 temporary sample plots of beech forest stands. Forest site index of beech forest stands was predicted using different modeling techniques such as multiple regression analysis (MLR), multilayer perceptron (MLP), radial basis function (RBF), multiple regression kriging (MLRK), multilayer perceptron kriging (MLPK), and radial basis function kriging (RBFK). The results showed that the RBFK ( R 2  = 0.98) and MLRK ( R 2  = 0.96) outperformed the others to predict forest site index in the study area. The greatest improvement occurred when krigged residual used with MLR, which increase from 0.23 to 0.96. Thus, MLRK method significantly improved the prediction accuracy for site index. The models combined with krigged residuals were more successful than those used without krigged residuals. The results of this study suggest that the combined methods may help obtaining improved site index maps for forest management.
doi_str_mv 10.1007/s10661-019-8028-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2328346230</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2327803113</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-75fb6aac2ce25cc650c2ebc96579c9f75db151621521e2c649178f7087f818963</originalsourceid><addsrcrecordid>eNp1kctu1TAURa0KRC8tH9AJssSEScCP6xczVJWHVIlJO7Yc57hNSeJgOxX3e_hRHOUWJCQmtnzO2vvY3ghdUPKOEqLeZ0qkpA2hptGE6UacoB0VijfMCPMM7QiVqpFcmlP0MucHQohRe_MCnXKq91oxskO_rh7dsLjST3e460OABFPBea4VN-B-KpDmONRTnPAI5T52Gbupw2PsYFhFBfz91P9YIOMQE4Zc-nGzezKp5VrFuS9QDTv4WVc8LwlwC1V87OcP2GHvMuBclu6AQ4ojvlnSdzico-fBDRleHfczdPvp6ubyS3P97fPXy4_XjeeKlUaJ0ErnPPPAhPdSEM-g9UYKZbwJSnQtFVQyKhgF5uXeUKWDIloFTbWR_Ay93XznFNcHFTv22cMwuAniki3jTPO9ZJxU9M0_6ENc0lRvt1JKE04prxTdKJ9izgmCnVP9nXSwlNg1QbslaGuCdk3Qiqp5fXRe2hG6P4qnyCrANiDX1nQH6e_o_7v-BsdgqTA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2327803113</pqid></control><display><type>article</type><title>Evaluating different spatial interpolation methods and modeling techniques for estimating spatial forest site index in pure beech forests: a case study from Turkey</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Günlü, Alkan ; Bulut, Sinan ; Keleş, Sedat ; Ercanlı, İlker</creator><creatorcontrib>Günlü, Alkan ; Bulut, Sinan ; Keleş, Sedat ; Ercanlı, İlker</creatorcontrib><description>Spatial interpolation methods are widely used to estimate some ecological and environmental parameters that are difficult to measure. One of these parameters is forest site index, which is a demonstration of forest productivity. The aim of this study was to estimate forest site index in a beech forest ecosystem in Turkey. In this context, soil characteristics, stand parameters, and topographic features were measured in 70 temporary sample plots of beech forest stands. Forest site index of beech forest stands was predicted using different modeling techniques such as multiple regression analysis (MLR), multilayer perceptron (MLP), radial basis function (RBF), multiple regression kriging (MLRK), multilayer perceptron kriging (MLPK), and radial basis function kriging (RBFK). The results showed that the RBFK ( R 2  = 0.98) and MLRK ( R 2  = 0.96) outperformed the others to predict forest site index in the study area. The greatest improvement occurred when krigged residual used with MLR, which increase from 0.23 to 0.96. Thus, MLRK method significantly improved the prediction accuracy for site index. The models combined with krigged residuals were more successful than those used without krigged residuals. The results of this study suggest that the combined methods may help obtaining improved site index maps for forest management.</description><identifier>ISSN: 0167-6369</identifier><identifier>EISSN: 1573-2959</identifier><identifier>DOI: 10.1007/s10661-019-8028-5</identifier><identifier>PMID: 31848720</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Atmospheric Protection/Air Quality Control/Air Pollution ; Beech ; Earth and Environmental Science ; Ecology ; Ecosystem ; Ecotoxicology ; Environment ; Environmental Management ; Environmental monitoring ; Environmental Monitoring - methods ; Environmental science ; Fagus ; Forest ecosystems ; Forest management ; Forest productivity ; Forests ; Interpolation ; Interpolation methods ; Monitoring/Environmental Analysis ; Site index ; Soil ; Spatial Analysis ; Terrestrial ecosystems ; Trees ; Turkey</subject><ispartof>Environmental monitoring and assessment, 2020-01, Vol.192 (1), p.53-53, Article 53</ispartof><rights>Springer Nature Switzerland AG 2019</rights><rights>Environmental Monitoring and Assessment is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-75fb6aac2ce25cc650c2ebc96579c9f75db151621521e2c649178f7087f818963</citedby><cites>FETCH-LOGICAL-c372t-75fb6aac2ce25cc650c2ebc96579c9f75db151621521e2c649178f7087f818963</cites><orcidid>0000-0001-6149-0910</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10661-019-8028-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10661-019-8028-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31848720$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Günlü, Alkan</creatorcontrib><creatorcontrib>Bulut, Sinan</creatorcontrib><creatorcontrib>Keleş, Sedat</creatorcontrib><creatorcontrib>Ercanlı, İlker</creatorcontrib><title>Evaluating different spatial interpolation methods and modeling techniques for estimating spatial forest site index in pure beech forests: a case study from Turkey</title><title>Environmental monitoring and assessment</title><addtitle>Environ Monit Assess</addtitle><addtitle>Environ Monit Assess</addtitle><description>Spatial interpolation methods are widely used to estimate some ecological and environmental parameters that are difficult to measure. One of these parameters is forest site index, which is a demonstration of forest productivity. The aim of this study was to estimate forest site index in a beech forest ecosystem in Turkey. In this context, soil characteristics, stand parameters, and topographic features were measured in 70 temporary sample plots of beech forest stands. Forest site index of beech forest stands was predicted using different modeling techniques such as multiple regression analysis (MLR), multilayer perceptron (MLP), radial basis function (RBF), multiple regression kriging (MLRK), multilayer perceptron kriging (MLPK), and radial basis function kriging (RBFK). The results showed that the RBFK ( R 2  = 0.98) and MLRK ( R 2  = 0.96) outperformed the others to predict forest site index in the study area. The greatest improvement occurred when krigged residual used with MLR, which increase from 0.23 to 0.96. Thus, MLRK method significantly improved the prediction accuracy for site index. The models combined with krigged residuals were more successful than those used without krigged residuals. The results of this study suggest that the combined methods may help obtaining improved site index maps for forest management.</description><subject>Atmospheric Protection/Air Quality Control/Air Pollution</subject><subject>Beech</subject><subject>Earth and Environmental Science</subject><subject>Ecology</subject><subject>Ecosystem</subject><subject>Ecotoxicology</subject><subject>Environment</subject><subject>Environmental Management</subject><subject>Environmental monitoring</subject><subject>Environmental Monitoring - methods</subject><subject>Environmental science</subject><subject>Fagus</subject><subject>Forest ecosystems</subject><subject>Forest management</subject><subject>Forest productivity</subject><subject>Forests</subject><subject>Interpolation</subject><subject>Interpolation methods</subject><subject>Monitoring/Environmental Analysis</subject><subject>Site index</subject><subject>Soil</subject><subject>Spatial Analysis</subject><subject>Terrestrial ecosystems</subject><subject>Trees</subject><subject>Turkey</subject><issn>0167-6369</issn><issn>1573-2959</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kctu1TAURa0KRC8tH9AJssSEScCP6xczVJWHVIlJO7Yc57hNSeJgOxX3e_hRHOUWJCQmtnzO2vvY3ghdUPKOEqLeZ0qkpA2hptGE6UacoB0VijfMCPMM7QiVqpFcmlP0MucHQohRe_MCnXKq91oxskO_rh7dsLjST3e460OABFPBea4VN-B-KpDmONRTnPAI5T52Gbupw2PsYFhFBfz91P9YIOMQE4Zc-nGzezKp5VrFuS9QDTv4WVc8LwlwC1V87OcP2GHvMuBclu6AQ4ojvlnSdzico-fBDRleHfczdPvp6ubyS3P97fPXy4_XjeeKlUaJ0ErnPPPAhPdSEM-g9UYKZbwJSnQtFVQyKhgF5uXeUKWDIloFTbWR_Ay93XznFNcHFTv22cMwuAniki3jTPO9ZJxU9M0_6ENc0lRvt1JKE04prxTdKJ9izgmCnVP9nXSwlNg1QbslaGuCdk3Qiqp5fXRe2hG6P4qnyCrANiDX1nQH6e_o_7v-BsdgqTA</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Günlü, Alkan</creator><creator>Bulut, Sinan</creator><creator>Keleş, Sedat</creator><creator>Ercanlı, İlker</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7QL</scope><scope>7SN</scope><scope>7ST</scope><scope>7T7</scope><scope>7TG</scope><scope>7TN</scope><scope>7U7</scope><scope>7UA</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H97</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>KL.</scope><scope>L.-</scope><scope>L.G</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>P64</scope><scope>PATMY</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6149-0910</orcidid></search><sort><creationdate>20200101</creationdate><title>Evaluating different spatial interpolation methods and modeling techniques for estimating spatial forest site index in pure beech forests: a case study from Turkey</title><author>Günlü, Alkan ; Bulut, Sinan ; Keleş, Sedat ; Ercanlı, İlker</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-75fb6aac2ce25cc650c2ebc96579c9f75db151621521e2c649178f7087f818963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Atmospheric Protection/Air Quality Control/Air Pollution</topic><topic>Beech</topic><topic>Earth and Environmental Science</topic><topic>Ecology</topic><topic>Ecosystem</topic><topic>Ecotoxicology</topic><topic>Environment</topic><topic>Environmental Management</topic><topic>Environmental monitoring</topic><topic>Environmental Monitoring - methods</topic><topic>Environmental science</topic><topic>Fagus</topic><topic>Forest ecosystems</topic><topic>Forest management</topic><topic>Forest productivity</topic><topic>Forests</topic><topic>Interpolation</topic><topic>Interpolation methods</topic><topic>Monitoring/Environmental Analysis</topic><topic>Site index</topic><topic>Soil</topic><topic>Spatial Analysis</topic><topic>Terrestrial ecosystems</topic><topic>Trees</topic><topic>Turkey</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Günlü, Alkan</creatorcontrib><creatorcontrib>Bulut, Sinan</creatorcontrib><creatorcontrib>Keleş, Sedat</creatorcontrib><creatorcontrib>Ercanlı, İlker</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ABI/INFORM Global</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Environmental monitoring and assessment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Günlü, Alkan</au><au>Bulut, Sinan</au><au>Keleş, Sedat</au><au>Ercanlı, İlker</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluating different spatial interpolation methods and modeling techniques for estimating spatial forest site index in pure beech forests: a case study from Turkey</atitle><jtitle>Environmental monitoring and assessment</jtitle><stitle>Environ Monit Assess</stitle><addtitle>Environ Monit Assess</addtitle><date>2020-01-01</date><risdate>2020</risdate><volume>192</volume><issue>1</issue><spage>53</spage><epage>53</epage><pages>53-53</pages><artnum>53</artnum><issn>0167-6369</issn><eissn>1573-2959</eissn><abstract>Spatial interpolation methods are widely used to estimate some ecological and environmental parameters that are difficult to measure. One of these parameters is forest site index, which is a demonstration of forest productivity. The aim of this study was to estimate forest site index in a beech forest ecosystem in Turkey. In this context, soil characteristics, stand parameters, and topographic features were measured in 70 temporary sample plots of beech forest stands. Forest site index of beech forest stands was predicted using different modeling techniques such as multiple regression analysis (MLR), multilayer perceptron (MLP), radial basis function (RBF), multiple regression kriging (MLRK), multilayer perceptron kriging (MLPK), and radial basis function kriging (RBFK). The results showed that the RBFK ( R 2  = 0.98) and MLRK ( R 2  = 0.96) outperformed the others to predict forest site index in the study area. The greatest improvement occurred when krigged residual used with MLR, which increase from 0.23 to 0.96. Thus, MLRK method significantly improved the prediction accuracy for site index. The models combined with krigged residuals were more successful than those used without krigged residuals. The results of this study suggest that the combined methods may help obtaining improved site index maps for forest management.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><pmid>31848720</pmid><doi>10.1007/s10661-019-8028-5</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-6149-0910</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0167-6369
ispartof Environmental monitoring and assessment, 2020-01, Vol.192 (1), p.53-53, Article 53
issn 0167-6369
1573-2959
language eng
recordid cdi_proquest_miscellaneous_2328346230
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Atmospheric Protection/Air Quality Control/Air Pollution
Beech
Earth and Environmental Science
Ecology
Ecosystem
Ecotoxicology
Environment
Environmental Management
Environmental monitoring
Environmental Monitoring - methods
Environmental science
Fagus
Forest ecosystems
Forest management
Forest productivity
Forests
Interpolation
Interpolation methods
Monitoring/Environmental Analysis
Site index
Soil
Spatial Analysis
Terrestrial ecosystems
Trees
Turkey
title Evaluating different spatial interpolation methods and modeling techniques for estimating spatial forest site index in pure beech forests: a case study from Turkey
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T10%3A07%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluating%20different%20spatial%20interpolation%20methods%20and%20modeling%20techniques%20for%20estimating%20spatial%20forest%20site%20index%20in%20pure%20beech%20forests:%20a%20case%20study%20from%20Turkey&rft.jtitle=Environmental%20monitoring%20and%20assessment&rft.au=G%C3%BCnl%C3%BC,%20Alkan&rft.date=2020-01-01&rft.volume=192&rft.issue=1&rft.spage=53&rft.epage=53&rft.pages=53-53&rft.artnum=53&rft.issn=0167-6369&rft.eissn=1573-2959&rft_id=info:doi/10.1007/s10661-019-8028-5&rft_dat=%3Cproquest_cross%3E2327803113%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2327803113&rft_id=info:pmid/31848720&rfr_iscdi=true