Uncertainty contribution of derivatization in gas chromatography/mass spectrometric analysis

Rationale The purpose of the current work is to realistically assess the uncertainty contribution in gas chromatography/mass spectrometry (GC/MS) analysis originating from less‐than‐ideal derivatization efficiency. Methods As the exemplary analytical method a two‐step derivatization method with KOH...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Rapid communications in mass spectrometry 2020-08, Vol.34 (16), p.e8704-n/a
Hauptverfasser: Vilbaste, Martin, Tammekivi, Eliise, Leito, Ivo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 16
container_start_page e8704
container_title Rapid communications in mass spectrometry
container_volume 34
creator Vilbaste, Martin
Tammekivi, Eliise
Leito, Ivo
description Rationale The purpose of the current work is to realistically assess the uncertainty contribution in gas chromatography/mass spectrometry (GC/MS) analysis originating from less‐than‐ideal derivatization efficiency. Methods As the exemplary analytical method a two‐step derivatization method with KOH and BSTFA (N,O‐bis(trimethylsilyl)trifluoroacetamide), applied for the analysis of fatty acid triglycerides (using real measurement data), was selected. The derivatization efficiencies were in the range 0.89–1.04. In this study, two approaches for bottom‐up uncertainty evaluation were compared: the traditional GUM approach and the Monte Carlo method (MCM). Both were used with and without taking correlation between input quantities into account. Results The most reliable uncertainty estimates were in the range 0.07–0.08 (expanded uncertainties at 95% coverage probability). A strong negative correlation was found between the slope and intercept of the calibration graph (r = −0.71) and it markedly influenced the uncertainty estimate of derivatization efficiency. The MCM was found to give somewhat higher uncertainty estimates, which are considered more realistic. Conclusions Derivatization directly affects the analysis result. Thus, in the case of this exemplary analysis, just derivatization alone (i.e. if all other uncertainty sources are neglected) causes relative expanded uncertainty around 8%, being thus an important and in some cases the dominant uncertainty contributor.
doi_str_mv 10.1002/rcm.8704
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2327941434</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2425766979</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3494-9b51734087811c1c6089106a31d86f6515477d582a55d1bdae0d84da09e325043</originalsourceid><addsrcrecordid>eNp1kNtKxDAQQIMo7noBv0AKvvhSd6ZJmuRRFm-wIoi-CSWbZjXSNmvSKvXr7bpeQPBpYDhzGA4hBwgnCJBNgqlPpAC2QcYISqSQUdwkY1AcU4ZKjshOjM8AiDyDbTKiKBmnSo3Jw31jbGi1a9o-Mb5pg5t3rfNN4hdJaYN71a17158b1ySPOibmKfhat_4x6OVTP6l1jElcWtMOazvcm0Q3uuqji3tka6GraPe_5i65Pz-7m16ms5uLq-npLDWUKZaqOUdBGUghEQ2aHKRCyDXFUuaLnCNnQpRcZprzEueltlBKVmpQlmYcGN0lx2vvMviXzsa2qF00tqp0Y30Xi4xmQjFkdIUe_UGffReGfweKZVzkuRLqV2iCjzHYRbEMrtahLxCKVfFiKF6sig_o4Zewm9e2_AG_Ew9AugbeXGX7f0XF7fT6U_gBW7iJ3g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2425766979</pqid></control><display><type>article</type><title>Uncertainty contribution of derivatization in gas chromatography/mass spectrometric analysis</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Vilbaste, Martin ; Tammekivi, Eliise ; Leito, Ivo</creator><creatorcontrib>Vilbaste, Martin ; Tammekivi, Eliise ; Leito, Ivo</creatorcontrib><description>Rationale The purpose of the current work is to realistically assess the uncertainty contribution in gas chromatography/mass spectrometry (GC/MS) analysis originating from less‐than‐ideal derivatization efficiency. Methods As the exemplary analytical method a two‐step derivatization method with KOH and BSTFA (N,O‐bis(trimethylsilyl)trifluoroacetamide), applied for the analysis of fatty acid triglycerides (using real measurement data), was selected. The derivatization efficiencies were in the range 0.89–1.04. In this study, two approaches for bottom‐up uncertainty evaluation were compared: the traditional GUM approach and the Monte Carlo method (MCM). Both were used with and without taking correlation between input quantities into account. Results The most reliable uncertainty estimates were in the range 0.07–0.08 (expanded uncertainties at 95% coverage probability). A strong negative correlation was found between the slope and intercept of the calibration graph (r = −0.71) and it markedly influenced the uncertainty estimate of derivatization efficiency. The MCM was found to give somewhat higher uncertainty estimates, which are considered more realistic. Conclusions Derivatization directly affects the analysis result. Thus, in the case of this exemplary analysis, just derivatization alone (i.e. if all other uncertainty sources are neglected) causes relative expanded uncertainty around 8%, being thus an important and in some cases the dominant uncertainty contributor.</description><identifier>ISSN: 0951-4198</identifier><identifier>EISSN: 1097-0231</identifier><identifier>DOI: 10.1002/rcm.8704</identifier><identifier>PMID: 31845399</identifier><language>eng</language><publisher>England: Wiley Subscription Services, Inc</publisher><subject>Chromatography ; Fatty acids ; Gas chromatography ; Mass spectrometry ; Monte Carlo simulation ; Triglycerides ; Uncertainty</subject><ispartof>Rapid communications in mass spectrometry, 2020-08, Vol.34 (16), p.e8704-n/a</ispartof><rights>2019 John Wiley &amp; Sons, Ltd.</rights><rights>2020 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3494-9b51734087811c1c6089106a31d86f6515477d582a55d1bdae0d84da09e325043</citedby><cites>FETCH-LOGICAL-c3494-9b51734087811c1c6089106a31d86f6515477d582a55d1bdae0d84da09e325043</cites><orcidid>0000-0002-3000-4964 ; 0000-0002-4158-7130</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Frcm.8704$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Frcm.8704$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31845399$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vilbaste, Martin</creatorcontrib><creatorcontrib>Tammekivi, Eliise</creatorcontrib><creatorcontrib>Leito, Ivo</creatorcontrib><title>Uncertainty contribution of derivatization in gas chromatography/mass spectrometric analysis</title><title>Rapid communications in mass spectrometry</title><addtitle>Rapid Commun Mass Spectrom</addtitle><description>Rationale The purpose of the current work is to realistically assess the uncertainty contribution in gas chromatography/mass spectrometry (GC/MS) analysis originating from less‐than‐ideal derivatization efficiency. Methods As the exemplary analytical method a two‐step derivatization method with KOH and BSTFA (N,O‐bis(trimethylsilyl)trifluoroacetamide), applied for the analysis of fatty acid triglycerides (using real measurement data), was selected. The derivatization efficiencies were in the range 0.89–1.04. In this study, two approaches for bottom‐up uncertainty evaluation were compared: the traditional GUM approach and the Monte Carlo method (MCM). Both were used with and without taking correlation between input quantities into account. Results The most reliable uncertainty estimates were in the range 0.07–0.08 (expanded uncertainties at 95% coverage probability). A strong negative correlation was found between the slope and intercept of the calibration graph (r = −0.71) and it markedly influenced the uncertainty estimate of derivatization efficiency. The MCM was found to give somewhat higher uncertainty estimates, which are considered more realistic. Conclusions Derivatization directly affects the analysis result. Thus, in the case of this exemplary analysis, just derivatization alone (i.e. if all other uncertainty sources are neglected) causes relative expanded uncertainty around 8%, being thus an important and in some cases the dominant uncertainty contributor.</description><subject>Chromatography</subject><subject>Fatty acids</subject><subject>Gas chromatography</subject><subject>Mass spectrometry</subject><subject>Monte Carlo simulation</subject><subject>Triglycerides</subject><subject>Uncertainty</subject><issn>0951-4198</issn><issn>1097-0231</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kNtKxDAQQIMo7noBv0AKvvhSd6ZJmuRRFm-wIoi-CSWbZjXSNmvSKvXr7bpeQPBpYDhzGA4hBwgnCJBNgqlPpAC2QcYISqSQUdwkY1AcU4ZKjshOjM8AiDyDbTKiKBmnSo3Jw31jbGi1a9o-Mb5pg5t3rfNN4hdJaYN71a17158b1ySPOibmKfhat_4x6OVTP6l1jElcWtMOazvcm0Q3uuqji3tka6GraPe_5i65Pz-7m16ms5uLq-npLDWUKZaqOUdBGUghEQ2aHKRCyDXFUuaLnCNnQpRcZprzEueltlBKVmpQlmYcGN0lx2vvMviXzsa2qF00tqp0Y30Xi4xmQjFkdIUe_UGffReGfweKZVzkuRLqV2iCjzHYRbEMrtahLxCKVfFiKF6sig_o4Zewm9e2_AG_Ew9AugbeXGX7f0XF7fT6U_gBW7iJ3g</recordid><startdate>20200830</startdate><enddate>20200830</enddate><creator>Vilbaste, Martin</creator><creator>Tammekivi, Eliise</creator><creator>Leito, Ivo</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3000-4964</orcidid><orcidid>https://orcid.org/0000-0002-4158-7130</orcidid></search><sort><creationdate>20200830</creationdate><title>Uncertainty contribution of derivatization in gas chromatography/mass spectrometric analysis</title><author>Vilbaste, Martin ; Tammekivi, Eliise ; Leito, Ivo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3494-9b51734087811c1c6089106a31d86f6515477d582a55d1bdae0d84da09e325043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Chromatography</topic><topic>Fatty acids</topic><topic>Gas chromatography</topic><topic>Mass spectrometry</topic><topic>Monte Carlo simulation</topic><topic>Triglycerides</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vilbaste, Martin</creatorcontrib><creatorcontrib>Tammekivi, Eliise</creatorcontrib><creatorcontrib>Leito, Ivo</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Rapid communications in mass spectrometry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vilbaste, Martin</au><au>Tammekivi, Eliise</au><au>Leito, Ivo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Uncertainty contribution of derivatization in gas chromatography/mass spectrometric analysis</atitle><jtitle>Rapid communications in mass spectrometry</jtitle><addtitle>Rapid Commun Mass Spectrom</addtitle><date>2020-08-30</date><risdate>2020</risdate><volume>34</volume><issue>16</issue><spage>e8704</spage><epage>n/a</epage><pages>e8704-n/a</pages><issn>0951-4198</issn><eissn>1097-0231</eissn><abstract>Rationale The purpose of the current work is to realistically assess the uncertainty contribution in gas chromatography/mass spectrometry (GC/MS) analysis originating from less‐than‐ideal derivatization efficiency. Methods As the exemplary analytical method a two‐step derivatization method with KOH and BSTFA (N,O‐bis(trimethylsilyl)trifluoroacetamide), applied for the analysis of fatty acid triglycerides (using real measurement data), was selected. The derivatization efficiencies were in the range 0.89–1.04. In this study, two approaches for bottom‐up uncertainty evaluation were compared: the traditional GUM approach and the Monte Carlo method (MCM). Both were used with and without taking correlation between input quantities into account. Results The most reliable uncertainty estimates were in the range 0.07–0.08 (expanded uncertainties at 95% coverage probability). A strong negative correlation was found between the slope and intercept of the calibration graph (r = −0.71) and it markedly influenced the uncertainty estimate of derivatization efficiency. The MCM was found to give somewhat higher uncertainty estimates, which are considered more realistic. Conclusions Derivatization directly affects the analysis result. Thus, in the case of this exemplary analysis, just derivatization alone (i.e. if all other uncertainty sources are neglected) causes relative expanded uncertainty around 8%, being thus an important and in some cases the dominant uncertainty contributor.</abstract><cop>England</cop><pub>Wiley Subscription Services, Inc</pub><pmid>31845399</pmid><doi>10.1002/rcm.8704</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-3000-4964</orcidid><orcidid>https://orcid.org/0000-0002-4158-7130</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0951-4198
ispartof Rapid communications in mass spectrometry, 2020-08, Vol.34 (16), p.e8704-n/a
issn 0951-4198
1097-0231
language eng
recordid cdi_proquest_miscellaneous_2327941434
source Wiley Online Library Journals Frontfile Complete
subjects Chromatography
Fatty acids
Gas chromatography
Mass spectrometry
Monte Carlo simulation
Triglycerides
Uncertainty
title Uncertainty contribution of derivatization in gas chromatography/mass spectrometric analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T09%3A10%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Uncertainty%20contribution%20of%20derivatization%20in%20gas%20chromatography/mass%20spectrometric%20analysis&rft.jtitle=Rapid%20communications%20in%20mass%20spectrometry&rft.au=Vilbaste,%20Martin&rft.date=2020-08-30&rft.volume=34&rft.issue=16&rft.spage=e8704&rft.epage=n/a&rft.pages=e8704-n/a&rft.issn=0951-4198&rft.eissn=1097-0231&rft_id=info:doi/10.1002/rcm.8704&rft_dat=%3Cproquest_cross%3E2425766979%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2425766979&rft_id=info:pmid/31845399&rfr_iscdi=true