Substitutions of strontium in bioactive calcium silicate bone cements stimulate osteogenic differentiation in human mesenchymal stem cells
Calcium silicate cements have been considered as alternative bone substitutes owing to its extraordinary bioactivity and osteogenicity. Unfortunately, the major disadvantage of the cements was the slow degradation rate which may limit the efficiency of bone regeneration. In this study, we proposed a...
Gespeichert in:
Veröffentlicht in: | Journal of materials science. Materials in medicine 2019-06, Vol.30 (6), p.68-13, Article 68 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 13 |
---|---|
container_issue | 6 |
container_start_page | 68 |
container_title | Journal of materials science. Materials in medicine |
container_volume | 30 |
creator | Huang, Tsui-Hsien Kao, Chia-Tze Shen, Yu-Fang Lin, Yi-Ting Liu, Yen-Ting Yen, Ssu-Yin Ho, Chia-Che |
description | Calcium silicate cements have been considered as alternative bone substitutes owing to its extraordinary bioactivity and osteogenicity. Unfortunately, the major disadvantage of the cements was the slow degradation rate which may limit the efficiency of bone regeneration. In this study, we proposed a facile method to synthesize degradable calcium silicate cements by incorporating strontium into the cements through solid-state sintering. The effects of Sr incorporation on physicochemical and biological properties of the cements were evaluated. Although, our findings revealed that the incorporation of strontium retarded the hardening reaction of the cements, the setting time of different cements (11–19 min) were in the acceptable range for clinical use. The presence of Sr in the CS cements would hampered the precipitation of calcium phosphate products on the surface after immersion in SBF, however, a layer of precipitated calcium phosphate products can be formed on the surface of the Sr-CS cement within 1 day immersion in SBF. More importantly, the degradation rate of the cements increased with increasing content of strontium, consequentially raised the levels of released strontium and silicon ions. The elevated dissolving products may contribute to the enhancement of the cytocompatibility, alkaline phosphatase activity, osteocalcin secretion, and mineralization of human Wharton’s jelly mesenchymal stem cells. Together, it is concluded that the strontium-incorporated calcium silicate cement might be a promising bone substitute that could accelerate the regeneration of irregularly shaped bone defects. |
doi_str_mv | 10.1007/s10856-019-6274-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2327937083</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2234910982</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-4e2d3b16e9f0d4f2a489e4f16a706bcf3390c1a870a0ce9d74ea745f7e3fc2fa3</originalsourceid><addsrcrecordid>eNp1kc1qFjEUhoMo9rN6AW5kwI2b0ZOfmUyWUvyDgou265DJnLQpk6ROEqG34FU3w1cVBFeBc573yYGXkNcU3lMA-SFTmIaxB6r6kUnRsyfkQAfJezHx6Sk5gBpkLwYOJ-RFzrcAINQwPCcnnNJxYBIO5NdFnXPxpRafYu6S63LZUiy-hs7HbvbJ2OJ_YmfNavdh9qu3pmA3p9imGDCW3EI-1HUfp1wwXWP0tlu8c7i1vTe7fffd1GBiFzBjtDf3wawtiaFp1jW_JM-cWTO-enxPydXnT5dnX_vz71--nX08760AVXqBbOEzHVE5WIRjRkwKhaOjkTDO1nGuwFIzSTBgUS1SoJFicBK5s8wZfkreHb13W_pRMRcdfN4vMBFTzZpxJhWXMPGGvv0HvU11i-06zRgXioKaWKPokbJbynlDp-82H8x2rynovSh9LEq3ovRelN4zbx7NdQ64_En8bqYB7AjktorXuP39-v_WBwazod8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2234910982</pqid></control><display><type>article</type><title>Substitutions of strontium in bioactive calcium silicate bone cements stimulate osteogenic differentiation in human mesenchymal stem cells</title><source>MEDLINE</source><source>Springer Online Journals Complete</source><creator>Huang, Tsui-Hsien ; Kao, Chia-Tze ; Shen, Yu-Fang ; Lin, Yi-Ting ; Liu, Yen-Ting ; Yen, Ssu-Yin ; Ho, Chia-Che</creator><creatorcontrib>Huang, Tsui-Hsien ; Kao, Chia-Tze ; Shen, Yu-Fang ; Lin, Yi-Ting ; Liu, Yen-Ting ; Yen, Ssu-Yin ; Ho, Chia-Che</creatorcontrib><description>Calcium silicate cements have been considered as alternative bone substitutes owing to its extraordinary bioactivity and osteogenicity. Unfortunately, the major disadvantage of the cements was the slow degradation rate which may limit the efficiency of bone regeneration. In this study, we proposed a facile method to synthesize degradable calcium silicate cements by incorporating strontium into the cements through solid-state sintering. The effects of Sr incorporation on physicochemical and biological properties of the cements were evaluated. Although, our findings revealed that the incorporation of strontium retarded the hardening reaction of the cements, the setting time of different cements (11–19 min) were in the acceptable range for clinical use. The presence of Sr in the CS cements would hampered the precipitation of calcium phosphate products on the surface after immersion in SBF, however, a layer of precipitated calcium phosphate products can be formed on the surface of the Sr-CS cement within 1 day immersion in SBF. More importantly, the degradation rate of the cements increased with increasing content of strontium, consequentially raised the levels of released strontium and silicon ions. The elevated dissolving products may contribute to the enhancement of the cytocompatibility, alkaline phosphatase activity, osteocalcin secretion, and mineralization of human Wharton’s jelly mesenchymal stem cells. Together, it is concluded that the strontium-incorporated calcium silicate cement might be a promising bone substitute that could accelerate the regeneration of irregularly shaped bone defects.</description><identifier>ISSN: 0957-4530</identifier><identifier>EISSN: 1573-4838</identifier><identifier>DOI: 10.1007/s10856-019-6274-2</identifier><identifier>PMID: 31165270</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Alkaline phosphatase ; Alkaline Phosphatase - metabolism ; Anthraquinones - chemistry ; Biocompatibility ; Biocompatible Materials - chemistry ; Biological activity ; Biological properties ; Biomaterials ; Biomaterials Synthesis and Characterization ; Biomedical Engineering and Bioengineering ; Biomedical materials ; Bone biomaterials ; Bone cements ; Bone Cements - chemistry ; Bone growth ; Bone Regeneration ; Bone Substitutes ; Calcium ; Calcium Compounds - chemistry ; Calcium phosphates ; Calcium Phosphates - chemistry ; Calcium silicates ; Cell Adhesion ; Cell Proliferation ; Cement ; Ceramics ; Chemistry and Materials Science ; Composites ; Degradation ; Differentiation (biology) ; Glass ; Humans ; Immersion ; Ions ; Materials Science ; Mesenchymal stem cells ; Mesenchymal Stem Cells - cytology ; Mesenchyme ; Mineralization ; Natural Materials ; Osteocalcin ; Osteocalcin - chemistry ; Osteogenesis - drug effects ; Polymer Sciences ; Powders ; Regeneration ; Regeneration (physiology) ; Regenerative Medicine/Tissue Engineering ; Secretion ; Setting (hardening) ; Silicates - chemistry ; Stem cells ; Stem Cells - cytology ; Strontium ; Strontium - chemistry ; Submerging ; Substitute bone ; Surfaces and Interfaces ; Surgical implants ; Tensile Strength ; Thin Films ; Wharton Jelly - metabolism</subject><ispartof>Journal of materials science. Materials in medicine, 2019-06, Vol.30 (6), p.68-13, Article 68</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>Journal of Materials Science: Materials in Medicine is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-4e2d3b16e9f0d4f2a489e4f16a706bcf3390c1a870a0ce9d74ea745f7e3fc2fa3</citedby><cites>FETCH-LOGICAL-c409t-4e2d3b16e9f0d4f2a489e4f16a706bcf3390c1a870a0ce9d74ea745f7e3fc2fa3</cites><orcidid>0000-0002-2825-3398</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10856-019-6274-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10856-019-6274-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27915,27916,41479,42548,51310</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31165270$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Huang, Tsui-Hsien</creatorcontrib><creatorcontrib>Kao, Chia-Tze</creatorcontrib><creatorcontrib>Shen, Yu-Fang</creatorcontrib><creatorcontrib>Lin, Yi-Ting</creatorcontrib><creatorcontrib>Liu, Yen-Ting</creatorcontrib><creatorcontrib>Yen, Ssu-Yin</creatorcontrib><creatorcontrib>Ho, Chia-Che</creatorcontrib><title>Substitutions of strontium in bioactive calcium silicate bone cements stimulate osteogenic differentiation in human mesenchymal stem cells</title><title>Journal of materials science. Materials in medicine</title><addtitle>J Mater Sci: Mater Med</addtitle><addtitle>J Mater Sci Mater Med</addtitle><description>Calcium silicate cements have been considered as alternative bone substitutes owing to its extraordinary bioactivity and osteogenicity. Unfortunately, the major disadvantage of the cements was the slow degradation rate which may limit the efficiency of bone regeneration. In this study, we proposed a facile method to synthesize degradable calcium silicate cements by incorporating strontium into the cements through solid-state sintering. The effects of Sr incorporation on physicochemical and biological properties of the cements were evaluated. Although, our findings revealed that the incorporation of strontium retarded the hardening reaction of the cements, the setting time of different cements (11–19 min) were in the acceptable range for clinical use. The presence of Sr in the CS cements would hampered the precipitation of calcium phosphate products on the surface after immersion in SBF, however, a layer of precipitated calcium phosphate products can be formed on the surface of the Sr-CS cement within 1 day immersion in SBF. More importantly, the degradation rate of the cements increased with increasing content of strontium, consequentially raised the levels of released strontium and silicon ions. The elevated dissolving products may contribute to the enhancement of the cytocompatibility, alkaline phosphatase activity, osteocalcin secretion, and mineralization of human Wharton’s jelly mesenchymal stem cells. Together, it is concluded that the strontium-incorporated calcium silicate cement might be a promising bone substitute that could accelerate the regeneration of irregularly shaped bone defects.</description><subject>Alkaline phosphatase</subject><subject>Alkaline Phosphatase - metabolism</subject><subject>Anthraquinones - chemistry</subject><subject>Biocompatibility</subject><subject>Biocompatible Materials - chemistry</subject><subject>Biological activity</subject><subject>Biological properties</subject><subject>Biomaterials</subject><subject>Biomaterials Synthesis and Characterization</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Biomedical materials</subject><subject>Bone biomaterials</subject><subject>Bone cements</subject><subject>Bone Cements - chemistry</subject><subject>Bone growth</subject><subject>Bone Regeneration</subject><subject>Bone Substitutes</subject><subject>Calcium</subject><subject>Calcium Compounds - chemistry</subject><subject>Calcium phosphates</subject><subject>Calcium Phosphates - chemistry</subject><subject>Calcium silicates</subject><subject>Cell Adhesion</subject><subject>Cell Proliferation</subject><subject>Cement</subject><subject>Ceramics</subject><subject>Chemistry and Materials Science</subject><subject>Composites</subject><subject>Degradation</subject><subject>Differentiation (biology)</subject><subject>Glass</subject><subject>Humans</subject><subject>Immersion</subject><subject>Ions</subject><subject>Materials Science</subject><subject>Mesenchymal stem cells</subject><subject>Mesenchymal Stem Cells - cytology</subject><subject>Mesenchyme</subject><subject>Mineralization</subject><subject>Natural Materials</subject><subject>Osteocalcin</subject><subject>Osteocalcin - chemistry</subject><subject>Osteogenesis - drug effects</subject><subject>Polymer Sciences</subject><subject>Powders</subject><subject>Regeneration</subject><subject>Regeneration (physiology)</subject><subject>Regenerative Medicine/Tissue Engineering</subject><subject>Secretion</subject><subject>Setting (hardening)</subject><subject>Silicates - chemistry</subject><subject>Stem cells</subject><subject>Stem Cells - cytology</subject><subject>Strontium</subject><subject>Strontium - chemistry</subject><subject>Submerging</subject><subject>Substitute bone</subject><subject>Surfaces and Interfaces</subject><subject>Surgical implants</subject><subject>Tensile Strength</subject><subject>Thin Films</subject><subject>Wharton Jelly - metabolism</subject><issn>0957-4530</issn><issn>1573-4838</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kc1qFjEUhoMo9rN6AW5kwI2b0ZOfmUyWUvyDgou265DJnLQpk6ROEqG34FU3w1cVBFeBc573yYGXkNcU3lMA-SFTmIaxB6r6kUnRsyfkQAfJezHx6Sk5gBpkLwYOJ-RFzrcAINQwPCcnnNJxYBIO5NdFnXPxpRafYu6S63LZUiy-hs7HbvbJ2OJ_YmfNavdh9qu3pmA3p9imGDCW3EI-1HUfp1wwXWP0tlu8c7i1vTe7fffd1GBiFzBjtDf3wawtiaFp1jW_JM-cWTO-enxPydXnT5dnX_vz71--nX08760AVXqBbOEzHVE5WIRjRkwKhaOjkTDO1nGuwFIzSTBgUS1SoJFicBK5s8wZfkreHb13W_pRMRcdfN4vMBFTzZpxJhWXMPGGvv0HvU11i-06zRgXioKaWKPokbJbynlDp-82H8x2rynovSh9LEq3ovRelN4zbx7NdQ64_En8bqYB7AjktorXuP39-v_WBwazod8</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>Huang, Tsui-Hsien</creator><creator>Kao, Chia-Tze</creator><creator>Shen, Yu-Fang</creator><creator>Lin, Yi-Ting</creator><creator>Liu, Yen-Ting</creator><creator>Yen, Ssu-Yin</creator><creator>Ho, Chia-Che</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KB.</scope><scope>KR7</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>S0W</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2825-3398</orcidid></search><sort><creationdate>20190601</creationdate><title>Substitutions of strontium in bioactive calcium silicate bone cements stimulate osteogenic differentiation in human mesenchymal stem cells</title><author>Huang, Tsui-Hsien ; Kao, Chia-Tze ; Shen, Yu-Fang ; Lin, Yi-Ting ; Liu, Yen-Ting ; Yen, Ssu-Yin ; Ho, Chia-Che</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-4e2d3b16e9f0d4f2a489e4f16a706bcf3390c1a870a0ce9d74ea745f7e3fc2fa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Alkaline phosphatase</topic><topic>Alkaline Phosphatase - metabolism</topic><topic>Anthraquinones - chemistry</topic><topic>Biocompatibility</topic><topic>Biocompatible Materials - chemistry</topic><topic>Biological activity</topic><topic>Biological properties</topic><topic>Biomaterials</topic><topic>Biomaterials Synthesis and Characterization</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Biomedical materials</topic><topic>Bone biomaterials</topic><topic>Bone cements</topic><topic>Bone Cements - chemistry</topic><topic>Bone growth</topic><topic>Bone Regeneration</topic><topic>Bone Substitutes</topic><topic>Calcium</topic><topic>Calcium Compounds - chemistry</topic><topic>Calcium phosphates</topic><topic>Calcium Phosphates - chemistry</topic><topic>Calcium silicates</topic><topic>Cell Adhesion</topic><topic>Cell Proliferation</topic><topic>Cement</topic><topic>Ceramics</topic><topic>Chemistry and Materials Science</topic><topic>Composites</topic><topic>Degradation</topic><topic>Differentiation (biology)</topic><topic>Glass</topic><topic>Humans</topic><topic>Immersion</topic><topic>Ions</topic><topic>Materials Science</topic><topic>Mesenchymal stem cells</topic><topic>Mesenchymal Stem Cells - cytology</topic><topic>Mesenchyme</topic><topic>Mineralization</topic><topic>Natural Materials</topic><topic>Osteocalcin</topic><topic>Osteocalcin - chemistry</topic><topic>Osteogenesis - drug effects</topic><topic>Polymer Sciences</topic><topic>Powders</topic><topic>Regeneration</topic><topic>Regeneration (physiology)</topic><topic>Regenerative Medicine/Tissue Engineering</topic><topic>Secretion</topic><topic>Setting (hardening)</topic><topic>Silicates - chemistry</topic><topic>Stem cells</topic><topic>Stem Cells - cytology</topic><topic>Strontium</topic><topic>Strontium - chemistry</topic><topic>Submerging</topic><topic>Substitute bone</topic><topic>Surfaces and Interfaces</topic><topic>Surgical implants</topic><topic>Tensile Strength</topic><topic>Thin Films</topic><topic>Wharton Jelly - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Tsui-Hsien</creatorcontrib><creatorcontrib>Kao, Chia-Tze</creatorcontrib><creatorcontrib>Shen, Yu-Fang</creatorcontrib><creatorcontrib>Lin, Yi-Ting</creatorcontrib><creatorcontrib>Liu, Yen-Ting</creatorcontrib><creatorcontrib>Yen, Ssu-Yin</creatorcontrib><creatorcontrib>Ho, Chia-Che</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of materials science. Materials in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Tsui-Hsien</au><au>Kao, Chia-Tze</au><au>Shen, Yu-Fang</au><au>Lin, Yi-Ting</au><au>Liu, Yen-Ting</au><au>Yen, Ssu-Yin</au><au>Ho, Chia-Che</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Substitutions of strontium in bioactive calcium silicate bone cements stimulate osteogenic differentiation in human mesenchymal stem cells</atitle><jtitle>Journal of materials science. Materials in medicine</jtitle><stitle>J Mater Sci: Mater Med</stitle><addtitle>J Mater Sci Mater Med</addtitle><date>2019-06-01</date><risdate>2019</risdate><volume>30</volume><issue>6</issue><spage>68</spage><epage>13</epage><pages>68-13</pages><artnum>68</artnum><issn>0957-4530</issn><eissn>1573-4838</eissn><abstract>Calcium silicate cements have been considered as alternative bone substitutes owing to its extraordinary bioactivity and osteogenicity. Unfortunately, the major disadvantage of the cements was the slow degradation rate which may limit the efficiency of bone regeneration. In this study, we proposed a facile method to synthesize degradable calcium silicate cements by incorporating strontium into the cements through solid-state sintering. The effects of Sr incorporation on physicochemical and biological properties of the cements were evaluated. Although, our findings revealed that the incorporation of strontium retarded the hardening reaction of the cements, the setting time of different cements (11–19 min) were in the acceptable range for clinical use. The presence of Sr in the CS cements would hampered the precipitation of calcium phosphate products on the surface after immersion in SBF, however, a layer of precipitated calcium phosphate products can be formed on the surface of the Sr-CS cement within 1 day immersion in SBF. More importantly, the degradation rate of the cements increased with increasing content of strontium, consequentially raised the levels of released strontium and silicon ions. The elevated dissolving products may contribute to the enhancement of the cytocompatibility, alkaline phosphatase activity, osteocalcin secretion, and mineralization of human Wharton’s jelly mesenchymal stem cells. Together, it is concluded that the strontium-incorporated calcium silicate cement might be a promising bone substitute that could accelerate the regeneration of irregularly shaped bone defects.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>31165270</pmid><doi>10.1007/s10856-019-6274-2</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-2825-3398</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0957-4530 |
ispartof | Journal of materials science. Materials in medicine, 2019-06, Vol.30 (6), p.68-13, Article 68 |
issn | 0957-4530 1573-4838 |
language | eng |
recordid | cdi_proquest_miscellaneous_2327937083 |
source | MEDLINE; Springer Online Journals Complete |
subjects | Alkaline phosphatase Alkaline Phosphatase - metabolism Anthraquinones - chemistry Biocompatibility Biocompatible Materials - chemistry Biological activity Biological properties Biomaterials Biomaterials Synthesis and Characterization Biomedical Engineering and Bioengineering Biomedical materials Bone biomaterials Bone cements Bone Cements - chemistry Bone growth Bone Regeneration Bone Substitutes Calcium Calcium Compounds - chemistry Calcium phosphates Calcium Phosphates - chemistry Calcium silicates Cell Adhesion Cell Proliferation Cement Ceramics Chemistry and Materials Science Composites Degradation Differentiation (biology) Glass Humans Immersion Ions Materials Science Mesenchymal stem cells Mesenchymal Stem Cells - cytology Mesenchyme Mineralization Natural Materials Osteocalcin Osteocalcin - chemistry Osteogenesis - drug effects Polymer Sciences Powders Regeneration Regeneration (physiology) Regenerative Medicine/Tissue Engineering Secretion Setting (hardening) Silicates - chemistry Stem cells Stem Cells - cytology Strontium Strontium - chemistry Submerging Substitute bone Surfaces and Interfaces Surgical implants Tensile Strength Thin Films Wharton Jelly - metabolism |
title | Substitutions of strontium in bioactive calcium silicate bone cements stimulate osteogenic differentiation in human mesenchymal stem cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T02%3A17%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Substitutions%20of%20strontium%20in%20bioactive%20calcium%20silicate%20bone%20cements%20stimulate%20osteogenic%20differentiation%20in%20human%20mesenchymal%20stem%20cells&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20medicine&rft.au=Huang,%20Tsui-Hsien&rft.date=2019-06-01&rft.volume=30&rft.issue=6&rft.spage=68&rft.epage=13&rft.pages=68-13&rft.artnum=68&rft.issn=0957-4530&rft.eissn=1573-4838&rft_id=info:doi/10.1007/s10856-019-6274-2&rft_dat=%3Cproquest_cross%3E2234910982%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2234910982&rft_id=info:pmid/31165270&rfr_iscdi=true |