Substitutions of strontium in bioactive calcium silicate bone cements stimulate osteogenic differentiation in human mesenchymal stem cells

Calcium silicate cements have been considered as alternative bone substitutes owing to its extraordinary bioactivity and osteogenicity. Unfortunately, the major disadvantage of the cements was the slow degradation rate which may limit the efficiency of bone regeneration. In this study, we proposed a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science. Materials in medicine 2019-06, Vol.30 (6), p.68-13, Article 68
Hauptverfasser: Huang, Tsui-Hsien, Kao, Chia-Tze, Shen, Yu-Fang, Lin, Yi-Ting, Liu, Yen-Ting, Yen, Ssu-Yin, Ho, Chia-Che
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13
container_issue 6
container_start_page 68
container_title Journal of materials science. Materials in medicine
container_volume 30
creator Huang, Tsui-Hsien
Kao, Chia-Tze
Shen, Yu-Fang
Lin, Yi-Ting
Liu, Yen-Ting
Yen, Ssu-Yin
Ho, Chia-Che
description Calcium silicate cements have been considered as alternative bone substitutes owing to its extraordinary bioactivity and osteogenicity. Unfortunately, the major disadvantage of the cements was the slow degradation rate which may limit the efficiency of bone regeneration. In this study, we proposed a facile method to synthesize degradable calcium silicate cements by incorporating strontium into the cements through solid-state sintering. The effects of Sr incorporation on physicochemical and biological properties of the cements were evaluated. Although, our findings revealed that the incorporation of strontium retarded the hardening reaction of the cements, the setting time of different cements (11–19 min) were in the acceptable range for clinical use. The presence of Sr in the CS cements would hampered the precipitation of calcium phosphate products on the surface after immersion in SBF, however, a layer of precipitated calcium phosphate products can be formed on the surface of the Sr-CS cement within 1 day immersion in SBF. More importantly, the degradation rate of the cements increased with increasing content of strontium, consequentially raised the levels of released strontium and silicon ions. The elevated dissolving products may contribute to the enhancement of the cytocompatibility, alkaline phosphatase activity, osteocalcin secretion, and mineralization of human Wharton’s jelly mesenchymal stem cells. Together, it is concluded that the strontium-incorporated calcium silicate cement might be a promising bone substitute that could accelerate the regeneration of irregularly shaped bone defects.
doi_str_mv 10.1007/s10856-019-6274-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2327937083</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2234910982</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-4e2d3b16e9f0d4f2a489e4f16a706bcf3390c1a870a0ce9d74ea745f7e3fc2fa3</originalsourceid><addsrcrecordid>eNp1kc1qFjEUhoMo9rN6AW5kwI2b0ZOfmUyWUvyDgou265DJnLQpk6ROEqG34FU3w1cVBFeBc573yYGXkNcU3lMA-SFTmIaxB6r6kUnRsyfkQAfJezHx6Sk5gBpkLwYOJ-RFzrcAINQwPCcnnNJxYBIO5NdFnXPxpRafYu6S63LZUiy-hs7HbvbJ2OJ_YmfNavdh9qu3pmA3p9imGDCW3EI-1HUfp1wwXWP0tlu8c7i1vTe7fffd1GBiFzBjtDf3wawtiaFp1jW_JM-cWTO-enxPydXnT5dnX_vz71--nX08760AVXqBbOEzHVE5WIRjRkwKhaOjkTDO1nGuwFIzSTBgUS1SoJFicBK5s8wZfkreHb13W_pRMRcdfN4vMBFTzZpxJhWXMPGGvv0HvU11i-06zRgXioKaWKPokbJbynlDp-82H8x2rynovSh9LEq3ovRelN4zbx7NdQ64_En8bqYB7AjktorXuP39-v_WBwazod8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2234910982</pqid></control><display><type>article</type><title>Substitutions of strontium in bioactive calcium silicate bone cements stimulate osteogenic differentiation in human mesenchymal stem cells</title><source>MEDLINE</source><source>Springer Online Journals Complete</source><creator>Huang, Tsui-Hsien ; Kao, Chia-Tze ; Shen, Yu-Fang ; Lin, Yi-Ting ; Liu, Yen-Ting ; Yen, Ssu-Yin ; Ho, Chia-Che</creator><creatorcontrib>Huang, Tsui-Hsien ; Kao, Chia-Tze ; Shen, Yu-Fang ; Lin, Yi-Ting ; Liu, Yen-Ting ; Yen, Ssu-Yin ; Ho, Chia-Che</creatorcontrib><description>Calcium silicate cements have been considered as alternative bone substitutes owing to its extraordinary bioactivity and osteogenicity. Unfortunately, the major disadvantage of the cements was the slow degradation rate which may limit the efficiency of bone regeneration. In this study, we proposed a facile method to synthesize degradable calcium silicate cements by incorporating strontium into the cements through solid-state sintering. The effects of Sr incorporation on physicochemical and biological properties of the cements were evaluated. Although, our findings revealed that the incorporation of strontium retarded the hardening reaction of the cements, the setting time of different cements (11–19 min) were in the acceptable range for clinical use. The presence of Sr in the CS cements would hampered the precipitation of calcium phosphate products on the surface after immersion in SBF, however, a layer of precipitated calcium phosphate products can be formed on the surface of the Sr-CS cement within 1 day immersion in SBF. More importantly, the degradation rate of the cements increased with increasing content of strontium, consequentially raised the levels of released strontium and silicon ions. The elevated dissolving products may contribute to the enhancement of the cytocompatibility, alkaline phosphatase activity, osteocalcin secretion, and mineralization of human Wharton’s jelly mesenchymal stem cells. Together, it is concluded that the strontium-incorporated calcium silicate cement might be a promising bone substitute that could accelerate the regeneration of irregularly shaped bone defects.</description><identifier>ISSN: 0957-4530</identifier><identifier>EISSN: 1573-4838</identifier><identifier>DOI: 10.1007/s10856-019-6274-2</identifier><identifier>PMID: 31165270</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Alkaline phosphatase ; Alkaline Phosphatase - metabolism ; Anthraquinones - chemistry ; Biocompatibility ; Biocompatible Materials - chemistry ; Biological activity ; Biological properties ; Biomaterials ; Biomaterials Synthesis and Characterization ; Biomedical Engineering and Bioengineering ; Biomedical materials ; Bone biomaterials ; Bone cements ; Bone Cements - chemistry ; Bone growth ; Bone Regeneration ; Bone Substitutes ; Calcium ; Calcium Compounds - chemistry ; Calcium phosphates ; Calcium Phosphates - chemistry ; Calcium silicates ; Cell Adhesion ; Cell Proliferation ; Cement ; Ceramics ; Chemistry and Materials Science ; Composites ; Degradation ; Differentiation (biology) ; Glass ; Humans ; Immersion ; Ions ; Materials Science ; Mesenchymal stem cells ; Mesenchymal Stem Cells - cytology ; Mesenchyme ; Mineralization ; Natural Materials ; Osteocalcin ; Osteocalcin - chemistry ; Osteogenesis - drug effects ; Polymer Sciences ; Powders ; Regeneration ; Regeneration (physiology) ; Regenerative Medicine/Tissue Engineering ; Secretion ; Setting (hardening) ; Silicates - chemistry ; Stem cells ; Stem Cells - cytology ; Strontium ; Strontium - chemistry ; Submerging ; Substitute bone ; Surfaces and Interfaces ; Surgical implants ; Tensile Strength ; Thin Films ; Wharton Jelly - metabolism</subject><ispartof>Journal of materials science. Materials in medicine, 2019-06, Vol.30 (6), p.68-13, Article 68</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>Journal of Materials Science: Materials in Medicine is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-4e2d3b16e9f0d4f2a489e4f16a706bcf3390c1a870a0ce9d74ea745f7e3fc2fa3</citedby><cites>FETCH-LOGICAL-c409t-4e2d3b16e9f0d4f2a489e4f16a706bcf3390c1a870a0ce9d74ea745f7e3fc2fa3</cites><orcidid>0000-0002-2825-3398</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10856-019-6274-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10856-019-6274-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27915,27916,41479,42548,51310</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31165270$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Huang, Tsui-Hsien</creatorcontrib><creatorcontrib>Kao, Chia-Tze</creatorcontrib><creatorcontrib>Shen, Yu-Fang</creatorcontrib><creatorcontrib>Lin, Yi-Ting</creatorcontrib><creatorcontrib>Liu, Yen-Ting</creatorcontrib><creatorcontrib>Yen, Ssu-Yin</creatorcontrib><creatorcontrib>Ho, Chia-Che</creatorcontrib><title>Substitutions of strontium in bioactive calcium silicate bone cements stimulate osteogenic differentiation in human mesenchymal stem cells</title><title>Journal of materials science. Materials in medicine</title><addtitle>J Mater Sci: Mater Med</addtitle><addtitle>J Mater Sci Mater Med</addtitle><description>Calcium silicate cements have been considered as alternative bone substitutes owing to its extraordinary bioactivity and osteogenicity. Unfortunately, the major disadvantage of the cements was the slow degradation rate which may limit the efficiency of bone regeneration. In this study, we proposed a facile method to synthesize degradable calcium silicate cements by incorporating strontium into the cements through solid-state sintering. The effects of Sr incorporation on physicochemical and biological properties of the cements were evaluated. Although, our findings revealed that the incorporation of strontium retarded the hardening reaction of the cements, the setting time of different cements (11–19 min) were in the acceptable range for clinical use. The presence of Sr in the CS cements would hampered the precipitation of calcium phosphate products on the surface after immersion in SBF, however, a layer of precipitated calcium phosphate products can be formed on the surface of the Sr-CS cement within 1 day immersion in SBF. More importantly, the degradation rate of the cements increased with increasing content of strontium, consequentially raised the levels of released strontium and silicon ions. The elevated dissolving products may contribute to the enhancement of the cytocompatibility, alkaline phosphatase activity, osteocalcin secretion, and mineralization of human Wharton’s jelly mesenchymal stem cells. Together, it is concluded that the strontium-incorporated calcium silicate cement might be a promising bone substitute that could accelerate the regeneration of irregularly shaped bone defects.</description><subject>Alkaline phosphatase</subject><subject>Alkaline Phosphatase - metabolism</subject><subject>Anthraquinones - chemistry</subject><subject>Biocompatibility</subject><subject>Biocompatible Materials - chemistry</subject><subject>Biological activity</subject><subject>Biological properties</subject><subject>Biomaterials</subject><subject>Biomaterials Synthesis and Characterization</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Biomedical materials</subject><subject>Bone biomaterials</subject><subject>Bone cements</subject><subject>Bone Cements - chemistry</subject><subject>Bone growth</subject><subject>Bone Regeneration</subject><subject>Bone Substitutes</subject><subject>Calcium</subject><subject>Calcium Compounds - chemistry</subject><subject>Calcium phosphates</subject><subject>Calcium Phosphates - chemistry</subject><subject>Calcium silicates</subject><subject>Cell Adhesion</subject><subject>Cell Proliferation</subject><subject>Cement</subject><subject>Ceramics</subject><subject>Chemistry and Materials Science</subject><subject>Composites</subject><subject>Degradation</subject><subject>Differentiation (biology)</subject><subject>Glass</subject><subject>Humans</subject><subject>Immersion</subject><subject>Ions</subject><subject>Materials Science</subject><subject>Mesenchymal stem cells</subject><subject>Mesenchymal Stem Cells - cytology</subject><subject>Mesenchyme</subject><subject>Mineralization</subject><subject>Natural Materials</subject><subject>Osteocalcin</subject><subject>Osteocalcin - chemistry</subject><subject>Osteogenesis - drug effects</subject><subject>Polymer Sciences</subject><subject>Powders</subject><subject>Regeneration</subject><subject>Regeneration (physiology)</subject><subject>Regenerative Medicine/Tissue Engineering</subject><subject>Secretion</subject><subject>Setting (hardening)</subject><subject>Silicates - chemistry</subject><subject>Stem cells</subject><subject>Stem Cells - cytology</subject><subject>Strontium</subject><subject>Strontium - chemistry</subject><subject>Submerging</subject><subject>Substitute bone</subject><subject>Surfaces and Interfaces</subject><subject>Surgical implants</subject><subject>Tensile Strength</subject><subject>Thin Films</subject><subject>Wharton Jelly - metabolism</subject><issn>0957-4530</issn><issn>1573-4838</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kc1qFjEUhoMo9rN6AW5kwI2b0ZOfmUyWUvyDgou265DJnLQpk6ROEqG34FU3w1cVBFeBc573yYGXkNcU3lMA-SFTmIaxB6r6kUnRsyfkQAfJezHx6Sk5gBpkLwYOJ-RFzrcAINQwPCcnnNJxYBIO5NdFnXPxpRafYu6S63LZUiy-hs7HbvbJ2OJ_YmfNavdh9qu3pmA3p9imGDCW3EI-1HUfp1wwXWP0tlu8c7i1vTe7fffd1GBiFzBjtDf3wawtiaFp1jW_JM-cWTO-enxPydXnT5dnX_vz71--nX08760AVXqBbOEzHVE5WIRjRkwKhaOjkTDO1nGuwFIzSTBgUS1SoJFicBK5s8wZfkreHb13W_pRMRcdfN4vMBFTzZpxJhWXMPGGvv0HvU11i-06zRgXioKaWKPokbJbynlDp-82H8x2rynovSh9LEq3ovRelN4zbx7NdQ64_En8bqYB7AjktorXuP39-v_WBwazod8</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>Huang, Tsui-Hsien</creator><creator>Kao, Chia-Tze</creator><creator>Shen, Yu-Fang</creator><creator>Lin, Yi-Ting</creator><creator>Liu, Yen-Ting</creator><creator>Yen, Ssu-Yin</creator><creator>Ho, Chia-Che</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KB.</scope><scope>KR7</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>S0W</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2825-3398</orcidid></search><sort><creationdate>20190601</creationdate><title>Substitutions of strontium in bioactive calcium silicate bone cements stimulate osteogenic differentiation in human mesenchymal stem cells</title><author>Huang, Tsui-Hsien ; Kao, Chia-Tze ; Shen, Yu-Fang ; Lin, Yi-Ting ; Liu, Yen-Ting ; Yen, Ssu-Yin ; Ho, Chia-Che</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-4e2d3b16e9f0d4f2a489e4f16a706bcf3390c1a870a0ce9d74ea745f7e3fc2fa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Alkaline phosphatase</topic><topic>Alkaline Phosphatase - metabolism</topic><topic>Anthraquinones - chemistry</topic><topic>Biocompatibility</topic><topic>Biocompatible Materials - chemistry</topic><topic>Biological activity</topic><topic>Biological properties</topic><topic>Biomaterials</topic><topic>Biomaterials Synthesis and Characterization</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Biomedical materials</topic><topic>Bone biomaterials</topic><topic>Bone cements</topic><topic>Bone Cements - chemistry</topic><topic>Bone growth</topic><topic>Bone Regeneration</topic><topic>Bone Substitutes</topic><topic>Calcium</topic><topic>Calcium Compounds - chemistry</topic><topic>Calcium phosphates</topic><topic>Calcium Phosphates - chemistry</topic><topic>Calcium silicates</topic><topic>Cell Adhesion</topic><topic>Cell Proliferation</topic><topic>Cement</topic><topic>Ceramics</topic><topic>Chemistry and Materials Science</topic><topic>Composites</topic><topic>Degradation</topic><topic>Differentiation (biology)</topic><topic>Glass</topic><topic>Humans</topic><topic>Immersion</topic><topic>Ions</topic><topic>Materials Science</topic><topic>Mesenchymal stem cells</topic><topic>Mesenchymal Stem Cells - cytology</topic><topic>Mesenchyme</topic><topic>Mineralization</topic><topic>Natural Materials</topic><topic>Osteocalcin</topic><topic>Osteocalcin - chemistry</topic><topic>Osteogenesis - drug effects</topic><topic>Polymer Sciences</topic><topic>Powders</topic><topic>Regeneration</topic><topic>Regeneration (physiology)</topic><topic>Regenerative Medicine/Tissue Engineering</topic><topic>Secretion</topic><topic>Setting (hardening)</topic><topic>Silicates - chemistry</topic><topic>Stem cells</topic><topic>Stem Cells - cytology</topic><topic>Strontium</topic><topic>Strontium - chemistry</topic><topic>Submerging</topic><topic>Substitute bone</topic><topic>Surfaces and Interfaces</topic><topic>Surgical implants</topic><topic>Tensile Strength</topic><topic>Thin Films</topic><topic>Wharton Jelly - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Tsui-Hsien</creatorcontrib><creatorcontrib>Kao, Chia-Tze</creatorcontrib><creatorcontrib>Shen, Yu-Fang</creatorcontrib><creatorcontrib>Lin, Yi-Ting</creatorcontrib><creatorcontrib>Liu, Yen-Ting</creatorcontrib><creatorcontrib>Yen, Ssu-Yin</creatorcontrib><creatorcontrib>Ho, Chia-Che</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of materials science. Materials in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Tsui-Hsien</au><au>Kao, Chia-Tze</au><au>Shen, Yu-Fang</au><au>Lin, Yi-Ting</au><au>Liu, Yen-Ting</au><au>Yen, Ssu-Yin</au><au>Ho, Chia-Che</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Substitutions of strontium in bioactive calcium silicate bone cements stimulate osteogenic differentiation in human mesenchymal stem cells</atitle><jtitle>Journal of materials science. Materials in medicine</jtitle><stitle>J Mater Sci: Mater Med</stitle><addtitle>J Mater Sci Mater Med</addtitle><date>2019-06-01</date><risdate>2019</risdate><volume>30</volume><issue>6</issue><spage>68</spage><epage>13</epage><pages>68-13</pages><artnum>68</artnum><issn>0957-4530</issn><eissn>1573-4838</eissn><abstract>Calcium silicate cements have been considered as alternative bone substitutes owing to its extraordinary bioactivity and osteogenicity. Unfortunately, the major disadvantage of the cements was the slow degradation rate which may limit the efficiency of bone regeneration. In this study, we proposed a facile method to synthesize degradable calcium silicate cements by incorporating strontium into the cements through solid-state sintering. The effects of Sr incorporation on physicochemical and biological properties of the cements were evaluated. Although, our findings revealed that the incorporation of strontium retarded the hardening reaction of the cements, the setting time of different cements (11–19 min) were in the acceptable range for clinical use. The presence of Sr in the CS cements would hampered the precipitation of calcium phosphate products on the surface after immersion in SBF, however, a layer of precipitated calcium phosphate products can be formed on the surface of the Sr-CS cement within 1 day immersion in SBF. More importantly, the degradation rate of the cements increased with increasing content of strontium, consequentially raised the levels of released strontium and silicon ions. The elevated dissolving products may contribute to the enhancement of the cytocompatibility, alkaline phosphatase activity, osteocalcin secretion, and mineralization of human Wharton’s jelly mesenchymal stem cells. Together, it is concluded that the strontium-incorporated calcium silicate cement might be a promising bone substitute that could accelerate the regeneration of irregularly shaped bone defects.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>31165270</pmid><doi>10.1007/s10856-019-6274-2</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-2825-3398</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0957-4530
ispartof Journal of materials science. Materials in medicine, 2019-06, Vol.30 (6), p.68-13, Article 68
issn 0957-4530
1573-4838
language eng
recordid cdi_proquest_miscellaneous_2327937083
source MEDLINE; Springer Online Journals Complete
subjects Alkaline phosphatase
Alkaline Phosphatase - metabolism
Anthraquinones - chemistry
Biocompatibility
Biocompatible Materials - chemistry
Biological activity
Biological properties
Biomaterials
Biomaterials Synthesis and Characterization
Biomedical Engineering and Bioengineering
Biomedical materials
Bone biomaterials
Bone cements
Bone Cements - chemistry
Bone growth
Bone Regeneration
Bone Substitutes
Calcium
Calcium Compounds - chemistry
Calcium phosphates
Calcium Phosphates - chemistry
Calcium silicates
Cell Adhesion
Cell Proliferation
Cement
Ceramics
Chemistry and Materials Science
Composites
Degradation
Differentiation (biology)
Glass
Humans
Immersion
Ions
Materials Science
Mesenchymal stem cells
Mesenchymal Stem Cells - cytology
Mesenchyme
Mineralization
Natural Materials
Osteocalcin
Osteocalcin - chemistry
Osteogenesis - drug effects
Polymer Sciences
Powders
Regeneration
Regeneration (physiology)
Regenerative Medicine/Tissue Engineering
Secretion
Setting (hardening)
Silicates - chemistry
Stem cells
Stem Cells - cytology
Strontium
Strontium - chemistry
Submerging
Substitute bone
Surfaces and Interfaces
Surgical implants
Tensile Strength
Thin Films
Wharton Jelly - metabolism
title Substitutions of strontium in bioactive calcium silicate bone cements stimulate osteogenic differentiation in human mesenchymal stem cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T02%3A17%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Substitutions%20of%20strontium%20in%20bioactive%20calcium%20silicate%20bone%20cements%20stimulate%20osteogenic%20differentiation%20in%20human%20mesenchymal%20stem%20cells&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20medicine&rft.au=Huang,%20Tsui-Hsien&rft.date=2019-06-01&rft.volume=30&rft.issue=6&rft.spage=68&rft.epage=13&rft.pages=68-13&rft.artnum=68&rft.issn=0957-4530&rft.eissn=1573-4838&rft_id=info:doi/10.1007/s10856-019-6274-2&rft_dat=%3Cproquest_cross%3E2234910982%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2234910982&rft_id=info:pmid/31165270&rfr_iscdi=true