A Novel Retinex-Based Fractional-Order Variational Model for Images With Severely Low Light
In this paper, we propose a novel Retinex-based fractional-order variational model for severely low-light images. The proposed method is more flexible in controlling the regularization extent than the existing integer-order regularization methods. Specifically, we decompose directly in the image dom...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on image processing 2020-01, Vol.29, p.3239-3253 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3253 |
---|---|
container_issue | |
container_start_page | 3239 |
container_title | IEEE transactions on image processing |
container_volume | 29 |
creator | Gu, Zhihao Li, Fang Fang, Faming Zhang, Guixu |
description | In this paper, we propose a novel Retinex-based fractional-order variational model for severely low-light images. The proposed method is more flexible in controlling the regularization extent than the existing integer-order regularization methods. Specifically, we decompose directly in the image domain and perform the fractional-order gradient total variation regularization on both the reflectance component and the illumination component to get more appropriate estimated results. The merits of the proposed method are as follows: 1) small-magnitude details are maintained in the estimated reflectance. 2) illumination components are effectively removed from the estimated reflectance. 3) the estimated illumination is more likely piecewise smooth. We compare the proposed method with other closely related Retinex-based methods. Experimental results demonstrate the effectiveness of the proposed method. |
doi_str_mv | 10.1109/TIP.2019.2958144 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_2327934325</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8931682</ieee_id><sourcerecordid>2349128896</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-1ee559f7d6c4cb5aaf2ca447a50b071e80104d116ec537d37a668bb83d9bf0223</originalsourceid><addsrcrecordid>eNpdkMtLAzEQh4Movu-CIAEvXrZm8tgkRxUfhWrF58HDkt2d1ZVtU5Ot2v_eLa0ePM0w8_0G5iNkD1gPgNnjh_5tjzOwPW6VASlXyCZYCQljkq92PVM60SDtBtmK8Z0xkArSdbIhwEiQzG6SlxN64z-xoXfY1mP8Tk5dxJJeBFe0tR-7JhmGEgN9cqF2iwm99mUXqHyg_ZF7xUif6_aN3uMnBmxmdOC_6KB-fWt3yFrlmoi7y7pNHi_OH86uksHwsn92MkgKIXWbAKJSttJlWsgiV85VvHBSaqdYzjSgYcBkCZBioYQuhXZpavLciNLmFeNcbJOjxd1J8B9TjG02qmOBTePG6Kcx44JrK6TgqkMP_6Hvfhq6p-aUtMCNsWlHsQVVBB9jwCqbhHrkwiwDls3FZ534bC4-W4rvIgfLw9N8hOVf4Nd0B-wvgBoR_9bGCkgNFz8HvIVS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2349128896</pqid></control><display><type>article</type><title>A Novel Retinex-Based Fractional-Order Variational Model for Images With Severely Low Light</title><source>IEEE Electronic Library (IEL)</source><creator>Gu, Zhihao ; Li, Fang ; Fang, Faming ; Zhang, Guixu</creator><creatorcontrib>Gu, Zhihao ; Li, Fang ; Fang, Faming ; Zhang, Guixu</creatorcontrib><description>In this paper, we propose a novel Retinex-based fractional-order variational model for severely low-light images. The proposed method is more flexible in controlling the regularization extent than the existing integer-order regularization methods. Specifically, we decompose directly in the image domain and perform the fractional-order gradient total variation regularization on both the reflectance component and the illumination component to get more appropriate estimated results. The merits of the proposed method are as follows: 1) small-magnitude details are maintained in the estimated reflectance. 2) illumination components are effectively removed from the estimated reflectance. 3) the estimated illumination is more likely piecewise smooth. We compare the proposed method with other closely related Retinex-based methods. Experimental results demonstrate the effectiveness of the proposed method.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2019.2958144</identifier><identifier>PMID: 31841409</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Analytical models ; Atmospheric modeling ; Computational modeling ; fractional-order ; Illumination ; Image enhancement ; Lighting ; low-light image ; Reflectance ; Regularization ; Regularization methods ; Retinex ; Retinex (algorithm) ; Topology ; variational model</subject><ispartof>IEEE transactions on image processing, 2020-01, Vol.29, p.3239-3253</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-1ee559f7d6c4cb5aaf2ca447a50b071e80104d116ec537d37a668bb83d9bf0223</citedby><cites>FETCH-LOGICAL-c347t-1ee559f7d6c4cb5aaf2ca447a50b071e80104d116ec537d37a668bb83d9bf0223</cites><orcidid>0000-0003-4511-4813 ; 0000-0001-6804-2651 ; 0000-0003-4720-6607</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8931682$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8931682$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31841409$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gu, Zhihao</creatorcontrib><creatorcontrib>Li, Fang</creatorcontrib><creatorcontrib>Fang, Faming</creatorcontrib><creatorcontrib>Zhang, Guixu</creatorcontrib><title>A Novel Retinex-Based Fractional-Order Variational Model for Images With Severely Low Light</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>In this paper, we propose a novel Retinex-based fractional-order variational model for severely low-light images. The proposed method is more flexible in controlling the regularization extent than the existing integer-order regularization methods. Specifically, we decompose directly in the image domain and perform the fractional-order gradient total variation regularization on both the reflectance component and the illumination component to get more appropriate estimated results. The merits of the proposed method are as follows: 1) small-magnitude details are maintained in the estimated reflectance. 2) illumination components are effectively removed from the estimated reflectance. 3) the estimated illumination is more likely piecewise smooth. We compare the proposed method with other closely related Retinex-based methods. Experimental results demonstrate the effectiveness of the proposed method.</description><subject>Analytical models</subject><subject>Atmospheric modeling</subject><subject>Computational modeling</subject><subject>fractional-order</subject><subject>Illumination</subject><subject>Image enhancement</subject><subject>Lighting</subject><subject>low-light image</subject><subject>Reflectance</subject><subject>Regularization</subject><subject>Regularization methods</subject><subject>Retinex</subject><subject>Retinex (algorithm)</subject><subject>Topology</subject><subject>variational model</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkMtLAzEQh4Movu-CIAEvXrZm8tgkRxUfhWrF58HDkt2d1ZVtU5Ot2v_eLa0ePM0w8_0G5iNkD1gPgNnjh_5tjzOwPW6VASlXyCZYCQljkq92PVM60SDtBtmK8Z0xkArSdbIhwEiQzG6SlxN64z-xoXfY1mP8Tk5dxJJeBFe0tR-7JhmGEgN9cqF2iwm99mUXqHyg_ZF7xUif6_aN3uMnBmxmdOC_6KB-fWt3yFrlmoi7y7pNHi_OH86uksHwsn92MkgKIXWbAKJSttJlWsgiV85VvHBSaqdYzjSgYcBkCZBioYQuhXZpavLciNLmFeNcbJOjxd1J8B9TjG02qmOBTePG6Kcx44JrK6TgqkMP_6Hvfhq6p-aUtMCNsWlHsQVVBB9jwCqbhHrkwiwDls3FZ534bC4-W4rvIgfLw9N8hOVf4Nd0B-wvgBoR_9bGCkgNFz8HvIVS</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Gu, Zhihao</creator><creator>Li, Fang</creator><creator>Fang, Faming</creator><creator>Zhang, Guixu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4511-4813</orcidid><orcidid>https://orcid.org/0000-0001-6804-2651</orcidid><orcidid>https://orcid.org/0000-0003-4720-6607</orcidid></search><sort><creationdate>20200101</creationdate><title>A Novel Retinex-Based Fractional-Order Variational Model for Images With Severely Low Light</title><author>Gu, Zhihao ; Li, Fang ; Fang, Faming ; Zhang, Guixu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-1ee559f7d6c4cb5aaf2ca447a50b071e80104d116ec537d37a668bb83d9bf0223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Analytical models</topic><topic>Atmospheric modeling</topic><topic>Computational modeling</topic><topic>fractional-order</topic><topic>Illumination</topic><topic>Image enhancement</topic><topic>Lighting</topic><topic>low-light image</topic><topic>Reflectance</topic><topic>Regularization</topic><topic>Regularization methods</topic><topic>Retinex</topic><topic>Retinex (algorithm)</topic><topic>Topology</topic><topic>variational model</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gu, Zhihao</creatorcontrib><creatorcontrib>Li, Fang</creatorcontrib><creatorcontrib>Fang, Faming</creatorcontrib><creatorcontrib>Zhang, Guixu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gu, Zhihao</au><au>Li, Fang</au><au>Fang, Faming</au><au>Zhang, Guixu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Novel Retinex-Based Fractional-Order Variational Model for Images With Severely Low Light</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2020-01-01</date><risdate>2020</risdate><volume>29</volume><spage>3239</spage><epage>3253</epage><pages>3239-3253</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>In this paper, we propose a novel Retinex-based fractional-order variational model for severely low-light images. The proposed method is more flexible in controlling the regularization extent than the existing integer-order regularization methods. Specifically, we decompose directly in the image domain and perform the fractional-order gradient total variation regularization on both the reflectance component and the illumination component to get more appropriate estimated results. The merits of the proposed method are as follows: 1) small-magnitude details are maintained in the estimated reflectance. 2) illumination components are effectively removed from the estimated reflectance. 3) the estimated illumination is more likely piecewise smooth. We compare the proposed method with other closely related Retinex-based methods. Experimental results demonstrate the effectiveness of the proposed method.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>31841409</pmid><doi>10.1109/TIP.2019.2958144</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-4511-4813</orcidid><orcidid>https://orcid.org/0000-0001-6804-2651</orcidid><orcidid>https://orcid.org/0000-0003-4720-6607</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1057-7149 |
ispartof | IEEE transactions on image processing, 2020-01, Vol.29, p.3239-3253 |
issn | 1057-7149 1941-0042 |
language | eng |
recordid | cdi_proquest_miscellaneous_2327934325 |
source | IEEE Electronic Library (IEL) |
subjects | Analytical models Atmospheric modeling Computational modeling fractional-order Illumination Image enhancement Lighting low-light image Reflectance Regularization Regularization methods Retinex Retinex (algorithm) Topology variational model |
title | A Novel Retinex-Based Fractional-Order Variational Model for Images With Severely Low Light |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T00%3A08%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Novel%20Retinex-Based%20Fractional-Order%20Variational%20Model%20for%20Images%20With%20Severely%20Low%20Light&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Gu,%20Zhihao&rft.date=2020-01-01&rft.volume=29&rft.spage=3239&rft.epage=3253&rft.pages=3239-3253&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2019.2958144&rft_dat=%3Cproquest_RIE%3E2349128896%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2349128896&rft_id=info:pmid/31841409&rft_ieee_id=8931682&rfr_iscdi=true |