A Novel Retinex-Based Fractional-Order Variational Model for Images With Severely Low Light

In this paper, we propose a novel Retinex-based fractional-order variational model for severely low-light images. The proposed method is more flexible in controlling the regularization extent than the existing integer-order regularization methods. Specifically, we decompose directly in the image dom...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing 2020-01, Vol.29, p.3239-3253
Hauptverfasser: Gu, Zhihao, Li, Fang, Fang, Faming, Zhang, Guixu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3253
container_issue
container_start_page 3239
container_title IEEE transactions on image processing
container_volume 29
creator Gu, Zhihao
Li, Fang
Fang, Faming
Zhang, Guixu
description In this paper, we propose a novel Retinex-based fractional-order variational model for severely low-light images. The proposed method is more flexible in controlling the regularization extent than the existing integer-order regularization methods. Specifically, we decompose directly in the image domain and perform the fractional-order gradient total variation regularization on both the reflectance component and the illumination component to get more appropriate estimated results. The merits of the proposed method are as follows: 1) small-magnitude details are maintained in the estimated reflectance. 2) illumination components are effectively removed from the estimated reflectance. 3) the estimated illumination is more likely piecewise smooth. We compare the proposed method with other closely related Retinex-based methods. Experimental results demonstrate the effectiveness of the proposed method.
doi_str_mv 10.1109/TIP.2019.2958144
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_2327934325</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8931682</ieee_id><sourcerecordid>2349128896</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-1ee559f7d6c4cb5aaf2ca447a50b071e80104d116ec537d37a668bb83d9bf0223</originalsourceid><addsrcrecordid>eNpdkMtLAzEQh4Movu-CIAEvXrZm8tgkRxUfhWrF58HDkt2d1ZVtU5Ot2v_eLa0ePM0w8_0G5iNkD1gPgNnjh_5tjzOwPW6VASlXyCZYCQljkq92PVM60SDtBtmK8Z0xkArSdbIhwEiQzG6SlxN64z-xoXfY1mP8Tk5dxJJeBFe0tR-7JhmGEgN9cqF2iwm99mUXqHyg_ZF7xUif6_aN3uMnBmxmdOC_6KB-fWt3yFrlmoi7y7pNHi_OH86uksHwsn92MkgKIXWbAKJSttJlWsgiV85VvHBSaqdYzjSgYcBkCZBioYQuhXZpavLciNLmFeNcbJOjxd1J8B9TjG02qmOBTePG6Kcx44JrK6TgqkMP_6Hvfhq6p-aUtMCNsWlHsQVVBB9jwCqbhHrkwiwDls3FZ534bC4-W4rvIgfLw9N8hOVf4Nd0B-wvgBoR_9bGCkgNFz8HvIVS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2349128896</pqid></control><display><type>article</type><title>A Novel Retinex-Based Fractional-Order Variational Model for Images With Severely Low Light</title><source>IEEE Electronic Library (IEL)</source><creator>Gu, Zhihao ; Li, Fang ; Fang, Faming ; Zhang, Guixu</creator><creatorcontrib>Gu, Zhihao ; Li, Fang ; Fang, Faming ; Zhang, Guixu</creatorcontrib><description>In this paper, we propose a novel Retinex-based fractional-order variational model for severely low-light images. The proposed method is more flexible in controlling the regularization extent than the existing integer-order regularization methods. Specifically, we decompose directly in the image domain and perform the fractional-order gradient total variation regularization on both the reflectance component and the illumination component to get more appropriate estimated results. The merits of the proposed method are as follows: 1) small-magnitude details are maintained in the estimated reflectance. 2) illumination components are effectively removed from the estimated reflectance. 3) the estimated illumination is more likely piecewise smooth. We compare the proposed method with other closely related Retinex-based methods. Experimental results demonstrate the effectiveness of the proposed method.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2019.2958144</identifier><identifier>PMID: 31841409</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Analytical models ; Atmospheric modeling ; Computational modeling ; fractional-order ; Illumination ; Image enhancement ; Lighting ; low-light image ; Reflectance ; Regularization ; Regularization methods ; Retinex ; Retinex (algorithm) ; Topology ; variational model</subject><ispartof>IEEE transactions on image processing, 2020-01, Vol.29, p.3239-3253</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-1ee559f7d6c4cb5aaf2ca447a50b071e80104d116ec537d37a668bb83d9bf0223</citedby><cites>FETCH-LOGICAL-c347t-1ee559f7d6c4cb5aaf2ca447a50b071e80104d116ec537d37a668bb83d9bf0223</cites><orcidid>0000-0003-4511-4813 ; 0000-0001-6804-2651 ; 0000-0003-4720-6607</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8931682$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8931682$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31841409$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gu, Zhihao</creatorcontrib><creatorcontrib>Li, Fang</creatorcontrib><creatorcontrib>Fang, Faming</creatorcontrib><creatorcontrib>Zhang, Guixu</creatorcontrib><title>A Novel Retinex-Based Fractional-Order Variational Model for Images With Severely Low Light</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>In this paper, we propose a novel Retinex-based fractional-order variational model for severely low-light images. The proposed method is more flexible in controlling the regularization extent than the existing integer-order regularization methods. Specifically, we decompose directly in the image domain and perform the fractional-order gradient total variation regularization on both the reflectance component and the illumination component to get more appropriate estimated results. The merits of the proposed method are as follows: 1) small-magnitude details are maintained in the estimated reflectance. 2) illumination components are effectively removed from the estimated reflectance. 3) the estimated illumination is more likely piecewise smooth. We compare the proposed method with other closely related Retinex-based methods. Experimental results demonstrate the effectiveness of the proposed method.</description><subject>Analytical models</subject><subject>Atmospheric modeling</subject><subject>Computational modeling</subject><subject>fractional-order</subject><subject>Illumination</subject><subject>Image enhancement</subject><subject>Lighting</subject><subject>low-light image</subject><subject>Reflectance</subject><subject>Regularization</subject><subject>Regularization methods</subject><subject>Retinex</subject><subject>Retinex (algorithm)</subject><subject>Topology</subject><subject>variational model</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkMtLAzEQh4Movu-CIAEvXrZm8tgkRxUfhWrF58HDkt2d1ZVtU5Ot2v_eLa0ePM0w8_0G5iNkD1gPgNnjh_5tjzOwPW6VASlXyCZYCQljkq92PVM60SDtBtmK8Z0xkArSdbIhwEiQzG6SlxN64z-xoXfY1mP8Tk5dxJJeBFe0tR-7JhmGEgN9cqF2iwm99mUXqHyg_ZF7xUif6_aN3uMnBmxmdOC_6KB-fWt3yFrlmoi7y7pNHi_OH86uksHwsn92MkgKIXWbAKJSttJlWsgiV85VvHBSaqdYzjSgYcBkCZBioYQuhXZpavLciNLmFeNcbJOjxd1J8B9TjG02qmOBTePG6Kcx44JrK6TgqkMP_6Hvfhq6p-aUtMCNsWlHsQVVBB9jwCqbhHrkwiwDls3FZ534bC4-W4rvIgfLw9N8hOVf4Nd0B-wvgBoR_9bGCkgNFz8HvIVS</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Gu, Zhihao</creator><creator>Li, Fang</creator><creator>Fang, Faming</creator><creator>Zhang, Guixu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4511-4813</orcidid><orcidid>https://orcid.org/0000-0001-6804-2651</orcidid><orcidid>https://orcid.org/0000-0003-4720-6607</orcidid></search><sort><creationdate>20200101</creationdate><title>A Novel Retinex-Based Fractional-Order Variational Model for Images With Severely Low Light</title><author>Gu, Zhihao ; Li, Fang ; Fang, Faming ; Zhang, Guixu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-1ee559f7d6c4cb5aaf2ca447a50b071e80104d116ec537d37a668bb83d9bf0223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Analytical models</topic><topic>Atmospheric modeling</topic><topic>Computational modeling</topic><topic>fractional-order</topic><topic>Illumination</topic><topic>Image enhancement</topic><topic>Lighting</topic><topic>low-light image</topic><topic>Reflectance</topic><topic>Regularization</topic><topic>Regularization methods</topic><topic>Retinex</topic><topic>Retinex (algorithm)</topic><topic>Topology</topic><topic>variational model</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gu, Zhihao</creatorcontrib><creatorcontrib>Li, Fang</creatorcontrib><creatorcontrib>Fang, Faming</creatorcontrib><creatorcontrib>Zhang, Guixu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gu, Zhihao</au><au>Li, Fang</au><au>Fang, Faming</au><au>Zhang, Guixu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Novel Retinex-Based Fractional-Order Variational Model for Images With Severely Low Light</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2020-01-01</date><risdate>2020</risdate><volume>29</volume><spage>3239</spage><epage>3253</epage><pages>3239-3253</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>In this paper, we propose a novel Retinex-based fractional-order variational model for severely low-light images. The proposed method is more flexible in controlling the regularization extent than the existing integer-order regularization methods. Specifically, we decompose directly in the image domain and perform the fractional-order gradient total variation regularization on both the reflectance component and the illumination component to get more appropriate estimated results. The merits of the proposed method are as follows: 1) small-magnitude details are maintained in the estimated reflectance. 2) illumination components are effectively removed from the estimated reflectance. 3) the estimated illumination is more likely piecewise smooth. We compare the proposed method with other closely related Retinex-based methods. Experimental results demonstrate the effectiveness of the proposed method.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>31841409</pmid><doi>10.1109/TIP.2019.2958144</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-4511-4813</orcidid><orcidid>https://orcid.org/0000-0001-6804-2651</orcidid><orcidid>https://orcid.org/0000-0003-4720-6607</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1057-7149
ispartof IEEE transactions on image processing, 2020-01, Vol.29, p.3239-3253
issn 1057-7149
1941-0042
language eng
recordid cdi_proquest_miscellaneous_2327934325
source IEEE Electronic Library (IEL)
subjects Analytical models
Atmospheric modeling
Computational modeling
fractional-order
Illumination
Image enhancement
Lighting
low-light image
Reflectance
Regularization
Regularization methods
Retinex
Retinex (algorithm)
Topology
variational model
title A Novel Retinex-Based Fractional-Order Variational Model for Images With Severely Low Light
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T00%3A08%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Novel%20Retinex-Based%20Fractional-Order%20Variational%20Model%20for%20Images%20With%20Severely%20Low%20Light&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Gu,%20Zhihao&rft.date=2020-01-01&rft.volume=29&rft.spage=3239&rft.epage=3253&rft.pages=3239-3253&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2019.2958144&rft_dat=%3Cproquest_RIE%3E2349128896%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2349128896&rft_id=info:pmid/31841409&rft_ieee_id=8931682&rfr_iscdi=true