All Two-Dimensional Pseudocapacitive Sheet Materials for Flexible Asymmetric Solid-State Planar Microsupercapacitors with High Energy Density

With the rapid development of portable devices and wireless protocols, miniaturized energy storage units have become an important prerequisite. Although in-plane microsupercapacitors are emerging as competitive candidate devices, their practical applications have been severely hindered by their low...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2020-01, Vol.14 (1), p.603-610
Hauptverfasser: Zhao, Fangfang, Liu, Weihong, Qiu, Tianlun, Gong, Wen-Bin, Ma, Wei, Li, Qingwen, Li, Feng, Geng, Fengxia
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 610
container_issue 1
container_start_page 603
container_title ACS nano
container_volume 14
creator Zhao, Fangfang
Liu, Weihong
Qiu, Tianlun
Gong, Wen-Bin
Ma, Wei
Li, Qingwen
Li, Feng
Geng, Fengxia
description With the rapid development of portable devices and wireless protocols, miniaturized energy storage units have become an important prerequisite. Although in-plane microsupercapacitors are emerging as competitive candidate devices, their practical applications have been severely hindered by their low energy density. Here, employing pseudocapacitive active materials working in complementary voltage windows, namely, manganese oxide (MnO2) and titanium carbide (Ti3C2), both in the two-dimensional sheet morphology, a flexible asymmetric interdigitated solid-state microsupercapacitor was assembled. Profiting from the perfect voltage complementarity of the two types of sheets, the high exposure of electrochemically active sites and the maximized utilization of the sheets due to the planar ion transport, the designed device achieved excellent electrochemical performance even when using a gel electrolyte. In particular, the device obtained a high specific capacitance of 106 F g–1 (295 mF cm–2), a wide potential window (2 V), an ultrahigh rate performance (retaining 83% even with a 20-fold in current density to 20 A g–1), an excellent cycling stability (87% retention after 104 cycles at 10 A g–1), and a competitive energy density of 58 W h kg–1 (162 μW h cm–2) that are even comparable to those of some microbatteries, while maintaining a high power density of 985 W kg–1 (2.7 mW cm–2). Importantly, this outstanding electrochemical performance was also stably maintained under various bending conditions. These results indicate that two-dimensional pseudocapacitive sheet materials have a plethora of possibilities for constructing flexible and wearable devices.
doi_str_mv 10.1021/acsnano.9b07183
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2327933012</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2327933012</sourcerecordid><originalsourceid>FETCH-LOGICAL-a333t-46aa92603d22435706a974bc1f20efedda5bb971860fd9379972bafa01e878263</originalsourceid><addsrcrecordid>eNp1kctu2zAQRYmiRfNo190FXBYolPBhk-LSiPMokKABnALdCSNpFDOgRIekkvoj8s-hYTW7rsjFmUPOvYR84-yUM8HPoIkDDP7U1EzzUn4gh9xIVbBS_fn4fp_zA3IU4yNjc11q9ZkcSF4KowQ7JK8L5-j9iy-WtschWj-Ao3cRx9Y3sIHGJvuMdLVGTPQWEgYLLtLOB3rp8K-tHdJF3PY9pmAbuvLOtsUqZZDeORgg0FvbBB_HDYbJ50OkLzat6bV9WNOLAcPDli53b6ftF_Kpy378Op3H5Pflxf35dXHz6-rn-eKmACllKmYKwAjFZCvETM41U2D0rG54Jxh22LYwr2uTA1Gsa43UxmhRQweMY6lLoeQx-b73boJ_GjGmqrexQZe_jH6MlZBCGykZFxk926O7NWLArtoE20PYVpxVuw6qqYNq6iBPnEzyse6xfef_hZ6BH3sgT1aPfgw58_hf3RvaHpTt</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2327933012</pqid></control><display><type>article</type><title>All Two-Dimensional Pseudocapacitive Sheet Materials for Flexible Asymmetric Solid-State Planar Microsupercapacitors with High Energy Density</title><source>American Chemical Society Journals</source><creator>Zhao, Fangfang ; Liu, Weihong ; Qiu, Tianlun ; Gong, Wen-Bin ; Ma, Wei ; Li, Qingwen ; Li, Feng ; Geng, Fengxia</creator><creatorcontrib>Zhao, Fangfang ; Liu, Weihong ; Qiu, Tianlun ; Gong, Wen-Bin ; Ma, Wei ; Li, Qingwen ; Li, Feng ; Geng, Fengxia</creatorcontrib><description>With the rapid development of portable devices and wireless protocols, miniaturized energy storage units have become an important prerequisite. Although in-plane microsupercapacitors are emerging as competitive candidate devices, their practical applications have been severely hindered by their low energy density. Here, employing pseudocapacitive active materials working in complementary voltage windows, namely, manganese oxide (MnO2) and titanium carbide (Ti3C2), both in the two-dimensional sheet morphology, a flexible asymmetric interdigitated solid-state microsupercapacitor was assembled. Profiting from the perfect voltage complementarity of the two types of sheets, the high exposure of electrochemically active sites and the maximized utilization of the sheets due to the planar ion transport, the designed device achieved excellent electrochemical performance even when using a gel electrolyte. In particular, the device obtained a high specific capacitance of 106 F g–1 (295 mF cm–2), a wide potential window (2 V), an ultrahigh rate performance (retaining 83% even with a 20-fold in current density to 20 A g–1), an excellent cycling stability (87% retention after 104 cycles at 10 A g–1), and a competitive energy density of 58 W h kg–1 (162 μW h cm–2) that are even comparable to those of some microbatteries, while maintaining a high power density of 985 W kg–1 (2.7 mW cm–2). Importantly, this outstanding electrochemical performance was also stably maintained under various bending conditions. These results indicate that two-dimensional pseudocapacitive sheet materials have a plethora of possibilities for constructing flexible and wearable devices.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.9b07183</identifier><identifier>PMID: 31829620</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS nano, 2020-01, Vol.14 (1), p.603-610</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a333t-46aa92603d22435706a974bc1f20efedda5bb971860fd9379972bafa01e878263</citedby><cites>FETCH-LOGICAL-a333t-46aa92603d22435706a974bc1f20efedda5bb971860fd9379972bafa01e878263</cites><orcidid>0000-0001-8905-3894 ; 0000-0002-2213-9914 ; 0000-0001-5557-4165</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsnano.9b07183$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsnano.9b07183$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31829620$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhao, Fangfang</creatorcontrib><creatorcontrib>Liu, Weihong</creatorcontrib><creatorcontrib>Qiu, Tianlun</creatorcontrib><creatorcontrib>Gong, Wen-Bin</creatorcontrib><creatorcontrib>Ma, Wei</creatorcontrib><creatorcontrib>Li, Qingwen</creatorcontrib><creatorcontrib>Li, Feng</creatorcontrib><creatorcontrib>Geng, Fengxia</creatorcontrib><title>All Two-Dimensional Pseudocapacitive Sheet Materials for Flexible Asymmetric Solid-State Planar Microsupercapacitors with High Energy Density</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>With the rapid development of portable devices and wireless protocols, miniaturized energy storage units have become an important prerequisite. Although in-plane microsupercapacitors are emerging as competitive candidate devices, their practical applications have been severely hindered by their low energy density. Here, employing pseudocapacitive active materials working in complementary voltage windows, namely, manganese oxide (MnO2) and titanium carbide (Ti3C2), both in the two-dimensional sheet morphology, a flexible asymmetric interdigitated solid-state microsupercapacitor was assembled. Profiting from the perfect voltage complementarity of the two types of sheets, the high exposure of electrochemically active sites and the maximized utilization of the sheets due to the planar ion transport, the designed device achieved excellent electrochemical performance even when using a gel electrolyte. In particular, the device obtained a high specific capacitance of 106 F g–1 (295 mF cm–2), a wide potential window (2 V), an ultrahigh rate performance (retaining 83% even with a 20-fold in current density to 20 A g–1), an excellent cycling stability (87% retention after 104 cycles at 10 A g–1), and a competitive energy density of 58 W h kg–1 (162 μW h cm–2) that are even comparable to those of some microbatteries, while maintaining a high power density of 985 W kg–1 (2.7 mW cm–2). Importantly, this outstanding electrochemical performance was also stably maintained under various bending conditions. These results indicate that two-dimensional pseudocapacitive sheet materials have a plethora of possibilities for constructing flexible and wearable devices.</description><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kctu2zAQRYmiRfNo190FXBYolPBhk-LSiPMokKABnALdCSNpFDOgRIekkvoj8s-hYTW7rsjFmUPOvYR84-yUM8HPoIkDDP7U1EzzUn4gh9xIVbBS_fn4fp_zA3IU4yNjc11q9ZkcSF4KowQ7JK8L5-j9iy-WtschWj-Ao3cRx9Y3sIHGJvuMdLVGTPQWEgYLLtLOB3rp8K-tHdJF3PY9pmAbuvLOtsUqZZDeORgg0FvbBB_HDYbJ50OkLzat6bV9WNOLAcPDli53b6ftF_Kpy378Op3H5Pflxf35dXHz6-rn-eKmACllKmYKwAjFZCvETM41U2D0rG54Jxh22LYwr2uTA1Gsa43UxmhRQweMY6lLoeQx-b73boJ_GjGmqrexQZe_jH6MlZBCGykZFxk926O7NWLArtoE20PYVpxVuw6qqYNq6iBPnEzyse6xfef_hZ6BH3sgT1aPfgw58_hf3RvaHpTt</recordid><startdate>20200128</startdate><enddate>20200128</enddate><creator>Zhao, Fangfang</creator><creator>Liu, Weihong</creator><creator>Qiu, Tianlun</creator><creator>Gong, Wen-Bin</creator><creator>Ma, Wei</creator><creator>Li, Qingwen</creator><creator>Li, Feng</creator><creator>Geng, Fengxia</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8905-3894</orcidid><orcidid>https://orcid.org/0000-0002-2213-9914</orcidid><orcidid>https://orcid.org/0000-0001-5557-4165</orcidid></search><sort><creationdate>20200128</creationdate><title>All Two-Dimensional Pseudocapacitive Sheet Materials for Flexible Asymmetric Solid-State Planar Microsupercapacitors with High Energy Density</title><author>Zhao, Fangfang ; Liu, Weihong ; Qiu, Tianlun ; Gong, Wen-Bin ; Ma, Wei ; Li, Qingwen ; Li, Feng ; Geng, Fengxia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a333t-46aa92603d22435706a974bc1f20efedda5bb971860fd9379972bafa01e878263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Fangfang</creatorcontrib><creatorcontrib>Liu, Weihong</creatorcontrib><creatorcontrib>Qiu, Tianlun</creatorcontrib><creatorcontrib>Gong, Wen-Bin</creatorcontrib><creatorcontrib>Ma, Wei</creatorcontrib><creatorcontrib>Li, Qingwen</creatorcontrib><creatorcontrib>Li, Feng</creatorcontrib><creatorcontrib>Geng, Fengxia</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Fangfang</au><au>Liu, Weihong</au><au>Qiu, Tianlun</au><au>Gong, Wen-Bin</au><au>Ma, Wei</au><au>Li, Qingwen</au><au>Li, Feng</au><au>Geng, Fengxia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>All Two-Dimensional Pseudocapacitive Sheet Materials for Flexible Asymmetric Solid-State Planar Microsupercapacitors with High Energy Density</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2020-01-28</date><risdate>2020</risdate><volume>14</volume><issue>1</issue><spage>603</spage><epage>610</epage><pages>603-610</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>With the rapid development of portable devices and wireless protocols, miniaturized energy storage units have become an important prerequisite. Although in-plane microsupercapacitors are emerging as competitive candidate devices, their practical applications have been severely hindered by their low energy density. Here, employing pseudocapacitive active materials working in complementary voltage windows, namely, manganese oxide (MnO2) and titanium carbide (Ti3C2), both in the two-dimensional sheet morphology, a flexible asymmetric interdigitated solid-state microsupercapacitor was assembled. Profiting from the perfect voltage complementarity of the two types of sheets, the high exposure of electrochemically active sites and the maximized utilization of the sheets due to the planar ion transport, the designed device achieved excellent electrochemical performance even when using a gel electrolyte. In particular, the device obtained a high specific capacitance of 106 F g–1 (295 mF cm–2), a wide potential window (2 V), an ultrahigh rate performance (retaining 83% even with a 20-fold in current density to 20 A g–1), an excellent cycling stability (87% retention after 104 cycles at 10 A g–1), and a competitive energy density of 58 W h kg–1 (162 μW h cm–2) that are even comparable to those of some microbatteries, while maintaining a high power density of 985 W kg–1 (2.7 mW cm–2). Importantly, this outstanding electrochemical performance was also stably maintained under various bending conditions. These results indicate that two-dimensional pseudocapacitive sheet materials have a plethora of possibilities for constructing flexible and wearable devices.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>31829620</pmid><doi>10.1021/acsnano.9b07183</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-8905-3894</orcidid><orcidid>https://orcid.org/0000-0002-2213-9914</orcidid><orcidid>https://orcid.org/0000-0001-5557-4165</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1936-0851
ispartof ACS nano, 2020-01, Vol.14 (1), p.603-610
issn 1936-0851
1936-086X
language eng
recordid cdi_proquest_miscellaneous_2327933012
source American Chemical Society Journals
title All Two-Dimensional Pseudocapacitive Sheet Materials for Flexible Asymmetric Solid-State Planar Microsupercapacitors with High Energy Density
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T04%3A21%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=All%20Two-Dimensional%20Pseudocapacitive%20Sheet%20Materials%20for%20Flexible%20Asymmetric%20Solid-State%20Planar%20Microsupercapacitors%20with%20High%20Energy%20Density&rft.jtitle=ACS%20nano&rft.au=Zhao,%20Fangfang&rft.date=2020-01-28&rft.volume=14&rft.issue=1&rft.spage=603&rft.epage=610&rft.pages=603-610&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.9b07183&rft_dat=%3Cproquest_cross%3E2327933012%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2327933012&rft_id=info:pmid/31829620&rfr_iscdi=true