On an explicit method for the numerical solution of problems of light wave propagation in nonlinear media
Attention is given to a method for the numerical solution of problems of axisymmetric-beam propagation in media with positive cubic nonlinearity on the basis of the parabolic-equation approach. A numerical experiment shows that the use of a mobile Lagrangian grid renders explicit methods of numerica...
Gespeichert in:
Veröffentlicht in: | Z̆urnal vyc̆islitelʹnoj matematiki i matematic̆eskoj fiziki 1983-05, Vol.23, p.743-748 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | rus |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 748 |
---|---|
container_issue | |
container_start_page | 743 |
container_title | Z̆urnal vyc̆islitelʹnoj matematiki i matematic̆eskoj fiziki |
container_volume | 23 |
creator | VASILKOV, A G DANILEIKO, I U K Lebedeva, T P Romanov, M F |
description | Attention is given to a method for the numerical solution of problems of axisymmetric-beam propagation in media with positive cubic nonlinearity on the basis of the parabolic-equation approach. A numerical experiment shows that the use of a mobile Lagrangian grid renders explicit methods of numerical solution stable. It is noted that this approach can be used to solve a large number of problems concerning the self-focusing of light beams with different intensity and phase profiles upon entering the nonlinear medium. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_23277033</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>23277033</sourcerecordid><originalsourceid>FETCH-proquest_miscellaneous_232770333</originalsourceid><addsrcrecordid>eNqNjLEKwkAQRK9QMKj_sJWdcORixFoUOxt7WePGrGz2Yu6ifr6J-AFOM8PwZkYmsTbLllmebyZmHsLd9lrlLs1tYviogAr0boQLjlBTrPwVSt9CrAi0q6nlAgWCly6yV_AlNK2_CNVhyMK3KsILnzTUDd7wS7GCehVWwrY_vTLOzLhECTT_-dQs9rvT9rDsZ4-OQjzXHAoSQSXfhXPq0vXaOuf-Bj-1e0vG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>23277033</pqid></control><display><type>article</type><title>On an explicit method for the numerical solution of problems of light wave propagation in nonlinear media</title><source>Math-Net.Ru (free access)</source><creator>VASILKOV, A G ; DANILEIKO, I U K ; Lebedeva, T P ; Romanov, M F</creator><creatorcontrib>VASILKOV, A G ; DANILEIKO, I U K ; Lebedeva, T P ; Romanov, M F</creatorcontrib><description>Attention is given to a method for the numerical solution of problems of axisymmetric-beam propagation in media with positive cubic nonlinearity on the basis of the parabolic-equation approach. A numerical experiment shows that the use of a mobile Lagrangian grid renders explicit methods of numerical solution stable. It is noted that this approach can be used to solve a large number of problems concerning the self-focusing of light beams with different intensity and phase profiles upon entering the nonlinear medium.</description><identifier>ISSN: 0044-4669</identifier><language>rus</language><ispartof>Z̆urnal vyc̆islitelʹnoj matematiki i matematic̆eskoj fiziki, 1983-05, Vol.23, p.743-748</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780</link.rule.ids></links><search><creatorcontrib>VASILKOV, A G</creatorcontrib><creatorcontrib>DANILEIKO, I U K</creatorcontrib><creatorcontrib>Lebedeva, T P</creatorcontrib><creatorcontrib>Romanov, M F</creatorcontrib><title>On an explicit method for the numerical solution of problems of light wave propagation in nonlinear media</title><title>Z̆urnal vyc̆islitelʹnoj matematiki i matematic̆eskoj fiziki</title><description>Attention is given to a method for the numerical solution of problems of axisymmetric-beam propagation in media with positive cubic nonlinearity on the basis of the parabolic-equation approach. A numerical experiment shows that the use of a mobile Lagrangian grid renders explicit methods of numerical solution stable. It is noted that this approach can be used to solve a large number of problems concerning the self-focusing of light beams with different intensity and phase profiles upon entering the nonlinear medium.</description><issn>0044-4669</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1983</creationdate><recordtype>article</recordtype><recordid>eNqNjLEKwkAQRK9QMKj_sJWdcORixFoUOxt7WePGrGz2Yu6ifr6J-AFOM8PwZkYmsTbLllmebyZmHsLd9lrlLs1tYviogAr0boQLjlBTrPwVSt9CrAi0q6nlAgWCly6yV_AlNK2_CNVhyMK3KsILnzTUDd7wS7GCehVWwrY_vTLOzLhECTT_-dQs9rvT9rDsZ4-OQjzXHAoSQSXfhXPq0vXaOuf-Bj-1e0vG</recordid><startdate>19830501</startdate><enddate>19830501</enddate><creator>VASILKOV, A G</creator><creator>DANILEIKO, I U K</creator><creator>Lebedeva, T P</creator><creator>Romanov, M F</creator><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>19830501</creationdate><title>On an explicit method for the numerical solution of problems of light wave propagation in nonlinear media</title><author>VASILKOV, A G ; DANILEIKO, I U K ; Lebedeva, T P ; Romanov, M F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_miscellaneous_232770333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>rus</language><creationdate>1983</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>VASILKOV, A G</creatorcontrib><creatorcontrib>DANILEIKO, I U K</creatorcontrib><creatorcontrib>Lebedeva, T P</creatorcontrib><creatorcontrib>Romanov, M F</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Z̆urnal vyc̆islitelʹnoj matematiki i matematic̆eskoj fiziki</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>VASILKOV, A G</au><au>DANILEIKO, I U K</au><au>Lebedeva, T P</au><au>Romanov, M F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On an explicit method for the numerical solution of problems of light wave propagation in nonlinear media</atitle><jtitle>Z̆urnal vyc̆islitelʹnoj matematiki i matematic̆eskoj fiziki</jtitle><date>1983-05-01</date><risdate>1983</risdate><volume>23</volume><spage>743</spage><epage>748</epage><pages>743-748</pages><issn>0044-4669</issn><abstract>Attention is given to a method for the numerical solution of problems of axisymmetric-beam propagation in media with positive cubic nonlinearity on the basis of the parabolic-equation approach. A numerical experiment shows that the use of a mobile Lagrangian grid renders explicit methods of numerical solution stable. It is noted that this approach can be used to solve a large number of problems concerning the self-focusing of light beams with different intensity and phase profiles upon entering the nonlinear medium.</abstract></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0044-4669 |
ispartof | Z̆urnal vyc̆islitelʹnoj matematiki i matematic̆eskoj fiziki, 1983-05, Vol.23, p.743-748 |
issn | 0044-4669 |
language | rus |
recordid | cdi_proquest_miscellaneous_23277033 |
source | Math-Net.Ru (free access) |
title | On an explicit method for the numerical solution of problems of light wave propagation in nonlinear media |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T18%3A22%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20an%20explicit%20method%20for%20the%20numerical%20solution%20of%20problems%20of%20light%20wave%20propagation%20in%20nonlinear%20media&rft.jtitle=Z%CC%86urnal%20vyc%CC%86islitel%CA%B9noj%20matematiki%20i%20matematic%CC%86eskoj%20fiziki&rft.au=VASILKOV,%20A%20G&rft.date=1983-05-01&rft.volume=23&rft.spage=743&rft.epage=748&rft.pages=743-748&rft.issn=0044-4669&rft_id=info:doi/&rft_dat=%3Cproquest%3E23277033%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=23277033&rft_id=info:pmid/&rfr_iscdi=true |