Time-dependent density matrix renormalization group quantum dynamics for realistic chemical systems

Electronic and/or vibronic coherence has been found by recent ultrafast spectroscopy experiments in many chemical, biological, and material systems. This indicates that there are strong and complicated interactions between electronic states and vibration modes in realistic chemical systems. Therefor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2019-12, Vol.151 (22), p.224101-224101
Hauptverfasser: Xie, Xiaoyu, Liu, Yuyang, Yao, Yao, Schollwöck, Ulrich, Liu, Chungen, Ma, Haibo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 224101
container_issue 22
container_start_page 224101
container_title The Journal of chemical physics
container_volume 151
creator Xie, Xiaoyu
Liu, Yuyang
Yao, Yao
Schollwöck, Ulrich
Liu, Chungen
Ma, Haibo
description Electronic and/or vibronic coherence has been found by recent ultrafast spectroscopy experiments in many chemical, biological, and material systems. This indicates that there are strong and complicated interactions between electronic states and vibration modes in realistic chemical systems. Therefore, simulations of quantum dynamics with a large number of electronic and vibrational degrees of freedom are highly desirable. Due to the efficient compression and localized representation of quantum states in the matrix-product state (MPS) formulation, time-evolution methods based on the MPS framework, which we summarily refer to as tDMRG (time-dependent density-matrix renormalization group) methods, are considered to be promising candidates to study the quantum dynamics of realistic chemical systems. In this work, we benchmark the performances of four different tDMRG methods, including global Taylor, global Krylov, and local one-site and two-site time-dependent variational principles (1TDVP and 2TDVP), with a comparison to multiconfiguration time-dependent Hartree and experimental results. Two typical chemical systems of internal conversion and singlet fission are investigated: one containing strong and high-order local and nonlocal electron-vibration couplings and the other exhibiting a continuous phonon bath. The comparison shows that the tDMRG methods (particularly, the 2TDVP method) can describe the full quantum dynamics in large chemical systems accurately and efficiently. Several key parameters in the tDMRG calculation including the truncation error threshold, time interval, and ordering of local sites were also investigated to strike the balance between efficiency and accuracy of results.
doi_str_mv 10.1063/1.5125945
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_2327383543</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2322936281</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-399c90766a7edf268ecf4a51946e402385ed79187060093ed936758cb56a52d63</originalsourceid><addsrcrecordid>eNp90E9rFDEYBvAgit1WD_0CJeDFCrPmzySZHGWxVSh4Wc9DmrxjUyaTaZIpXT-9qbtWqOAlgfDjefM-CJ1SsqZE8o90LSgTuhUv0IqSTjdKavISrQhhtNGSyCN0nPMtIYQq1r5GR5x2XEklVshufYDGwQyTg6ngemRfdjiYkvwDTjDFFMzof5ri44R_pLjM-G4xU1kCdrvJBG8zHmKqtLJcvMX2BuqrGXHe5QIhv0GvBjNmeHu4T9D3i8_bzZfm6tvl182nq8byjpeGa201UVIaBW5gsgM7tEZQ3UpoCeOdAKc07RSRhGgOTvO6QmevhTSCOclP0Pt97pzi3QK59MFnC-NoJohL7hlnqk4SLa_03TN6G5c01d89KlaTWUerOt8rm2LOCYZ-Tj6YtOsp6R-b72l_aL7as0Pich3APck_VVfwYQ-y9eV3m0_mPqa_Sf3shv_hf0f_Ahagmec</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2322936281</pqid></control><display><type>article</type><title>Time-dependent density matrix renormalization group quantum dynamics for realistic chemical systems</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Xie, Xiaoyu ; Liu, Yuyang ; Yao, Yao ; Schollwöck, Ulrich ; Liu, Chungen ; Ma, Haibo</creator><creatorcontrib>Xie, Xiaoyu ; Liu, Yuyang ; Yao, Yao ; Schollwöck, Ulrich ; Liu, Chungen ; Ma, Haibo</creatorcontrib><description>Electronic and/or vibronic coherence has been found by recent ultrafast spectroscopy experiments in many chemical, biological, and material systems. This indicates that there are strong and complicated interactions between electronic states and vibration modes in realistic chemical systems. Therefore, simulations of quantum dynamics with a large number of electronic and vibrational degrees of freedom are highly desirable. Due to the efficient compression and localized representation of quantum states in the matrix-product state (MPS) formulation, time-evolution methods based on the MPS framework, which we summarily refer to as tDMRG (time-dependent density-matrix renormalization group) methods, are considered to be promising candidates to study the quantum dynamics of realistic chemical systems. In this work, we benchmark the performances of four different tDMRG methods, including global Taylor, global Krylov, and local one-site and two-site time-dependent variational principles (1TDVP and 2TDVP), with a comparison to multiconfiguration time-dependent Hartree and experimental results. Two typical chemical systems of internal conversion and singlet fission are investigated: one containing strong and high-order local and nonlocal electron-vibration couplings and the other exhibiting a continuous phonon bath. The comparison shows that the tDMRG methods (particularly, the 2TDVP method) can describe the full quantum dynamics in large chemical systems accurately and efficiently. Several key parameters in the tDMRG calculation including the truncation error threshold, time interval, and ordering of local sites were also investigated to strike the balance between efficiency and accuracy of results.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.5125945</identifier><identifier>PMID: 31837675</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Couplings ; Density ; Dynamics ; Electron states ; Group dynamics ; Internal conversion ; Mathematical analysis ; Organic chemistry ; Quantum theory ; Time dependence ; Truncation errors ; Variational principles ; Vibration mode</subject><ispartof>The Journal of chemical physics, 2019-12, Vol.151 (22), p.224101-224101</ispartof><rights>Author(s)</rights><rights>2019 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-399c90766a7edf268ecf4a51946e402385ed79187060093ed936758cb56a52d63</citedby><cites>FETCH-LOGICAL-c383t-399c90766a7edf268ecf4a51946e402385ed79187060093ed936758cb56a52d63</cites><orcidid>0000-0002-4073-8240 ; 0000-0001-7915-3429 ; 0000-0002-2538-1802 ; 0000000179153429 ; 0000000240738240 ; 0000000225381802</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/1.5125945$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4498,27901,27902,76126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31837675$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xie, Xiaoyu</creatorcontrib><creatorcontrib>Liu, Yuyang</creatorcontrib><creatorcontrib>Yao, Yao</creatorcontrib><creatorcontrib>Schollwöck, Ulrich</creatorcontrib><creatorcontrib>Liu, Chungen</creatorcontrib><creatorcontrib>Ma, Haibo</creatorcontrib><title>Time-dependent density matrix renormalization group quantum dynamics for realistic chemical systems</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>Electronic and/or vibronic coherence has been found by recent ultrafast spectroscopy experiments in many chemical, biological, and material systems. This indicates that there are strong and complicated interactions between electronic states and vibration modes in realistic chemical systems. Therefore, simulations of quantum dynamics with a large number of electronic and vibrational degrees of freedom are highly desirable. Due to the efficient compression and localized representation of quantum states in the matrix-product state (MPS) formulation, time-evolution methods based on the MPS framework, which we summarily refer to as tDMRG (time-dependent density-matrix renormalization group) methods, are considered to be promising candidates to study the quantum dynamics of realistic chemical systems. In this work, we benchmark the performances of four different tDMRG methods, including global Taylor, global Krylov, and local one-site and two-site time-dependent variational principles (1TDVP and 2TDVP), with a comparison to multiconfiguration time-dependent Hartree and experimental results. Two typical chemical systems of internal conversion and singlet fission are investigated: one containing strong and high-order local and nonlocal electron-vibration couplings and the other exhibiting a continuous phonon bath. The comparison shows that the tDMRG methods (particularly, the 2TDVP method) can describe the full quantum dynamics in large chemical systems accurately and efficiently. Several key parameters in the tDMRG calculation including the truncation error threshold, time interval, and ordering of local sites were also investigated to strike the balance between efficiency and accuracy of results.</description><subject>Couplings</subject><subject>Density</subject><subject>Dynamics</subject><subject>Electron states</subject><subject>Group dynamics</subject><subject>Internal conversion</subject><subject>Mathematical analysis</subject><subject>Organic chemistry</subject><subject>Quantum theory</subject><subject>Time dependence</subject><subject>Truncation errors</subject><subject>Variational principles</subject><subject>Vibration mode</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp90E9rFDEYBvAgit1WD_0CJeDFCrPmzySZHGWxVSh4Wc9DmrxjUyaTaZIpXT-9qbtWqOAlgfDjefM-CJ1SsqZE8o90LSgTuhUv0IqSTjdKavISrQhhtNGSyCN0nPMtIYQq1r5GR5x2XEklVshufYDGwQyTg6ngemRfdjiYkvwDTjDFFMzof5ri44R_pLjM-G4xU1kCdrvJBG8zHmKqtLJcvMX2BuqrGXHe5QIhv0GvBjNmeHu4T9D3i8_bzZfm6tvl182nq8byjpeGa201UVIaBW5gsgM7tEZQ3UpoCeOdAKc07RSRhGgOTvO6QmevhTSCOclP0Pt97pzi3QK59MFnC-NoJohL7hlnqk4SLa_03TN6G5c01d89KlaTWUerOt8rm2LOCYZ-Tj6YtOsp6R-b72l_aL7as0Pich3APck_VVfwYQ-y9eV3m0_mPqa_Sf3shv_hf0f_Ahagmec</recordid><startdate>20191214</startdate><enddate>20191214</enddate><creator>Xie, Xiaoyu</creator><creator>Liu, Yuyang</creator><creator>Yao, Yao</creator><creator>Schollwöck, Ulrich</creator><creator>Liu, Chungen</creator><creator>Ma, Haibo</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4073-8240</orcidid><orcidid>https://orcid.org/0000-0001-7915-3429</orcidid><orcidid>https://orcid.org/0000-0002-2538-1802</orcidid><orcidid>https://orcid.org/0000000179153429</orcidid><orcidid>https://orcid.org/0000000240738240</orcidid><orcidid>https://orcid.org/0000000225381802</orcidid></search><sort><creationdate>20191214</creationdate><title>Time-dependent density matrix renormalization group quantum dynamics for realistic chemical systems</title><author>Xie, Xiaoyu ; Liu, Yuyang ; Yao, Yao ; Schollwöck, Ulrich ; Liu, Chungen ; Ma, Haibo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-399c90766a7edf268ecf4a51946e402385ed79187060093ed936758cb56a52d63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Couplings</topic><topic>Density</topic><topic>Dynamics</topic><topic>Electron states</topic><topic>Group dynamics</topic><topic>Internal conversion</topic><topic>Mathematical analysis</topic><topic>Organic chemistry</topic><topic>Quantum theory</topic><topic>Time dependence</topic><topic>Truncation errors</topic><topic>Variational principles</topic><topic>Vibration mode</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xie, Xiaoyu</creatorcontrib><creatorcontrib>Liu, Yuyang</creatorcontrib><creatorcontrib>Yao, Yao</creatorcontrib><creatorcontrib>Schollwöck, Ulrich</creatorcontrib><creatorcontrib>Liu, Chungen</creatorcontrib><creatorcontrib>Ma, Haibo</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xie, Xiaoyu</au><au>Liu, Yuyang</au><au>Yao, Yao</au><au>Schollwöck, Ulrich</au><au>Liu, Chungen</au><au>Ma, Haibo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Time-dependent density matrix renormalization group quantum dynamics for realistic chemical systems</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2019-12-14</date><risdate>2019</risdate><volume>151</volume><issue>22</issue><spage>224101</spage><epage>224101</epage><pages>224101-224101</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>Electronic and/or vibronic coherence has been found by recent ultrafast spectroscopy experiments in many chemical, biological, and material systems. This indicates that there are strong and complicated interactions between electronic states and vibration modes in realistic chemical systems. Therefore, simulations of quantum dynamics with a large number of electronic and vibrational degrees of freedom are highly desirable. Due to the efficient compression and localized representation of quantum states in the matrix-product state (MPS) formulation, time-evolution methods based on the MPS framework, which we summarily refer to as tDMRG (time-dependent density-matrix renormalization group) methods, are considered to be promising candidates to study the quantum dynamics of realistic chemical systems. In this work, we benchmark the performances of four different tDMRG methods, including global Taylor, global Krylov, and local one-site and two-site time-dependent variational principles (1TDVP and 2TDVP), with a comparison to multiconfiguration time-dependent Hartree and experimental results. Two typical chemical systems of internal conversion and singlet fission are investigated: one containing strong and high-order local and nonlocal electron-vibration couplings and the other exhibiting a continuous phonon bath. The comparison shows that the tDMRG methods (particularly, the 2TDVP method) can describe the full quantum dynamics in large chemical systems accurately and efficiently. Several key parameters in the tDMRG calculation including the truncation error threshold, time interval, and ordering of local sites were also investigated to strike the balance between efficiency and accuracy of results.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>31837675</pmid><doi>10.1063/1.5125945</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-4073-8240</orcidid><orcidid>https://orcid.org/0000-0001-7915-3429</orcidid><orcidid>https://orcid.org/0000-0002-2538-1802</orcidid><orcidid>https://orcid.org/0000000179153429</orcidid><orcidid>https://orcid.org/0000000240738240</orcidid><orcidid>https://orcid.org/0000000225381802</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2019-12, Vol.151 (22), p.224101-224101
issn 0021-9606
1089-7690
language eng
recordid cdi_proquest_miscellaneous_2327383543
source AIP Journals Complete; Alma/SFX Local Collection
subjects Couplings
Density
Dynamics
Electron states
Group dynamics
Internal conversion
Mathematical analysis
Organic chemistry
Quantum theory
Time dependence
Truncation errors
Variational principles
Vibration mode
title Time-dependent density matrix renormalization group quantum dynamics for realistic chemical systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T21%3A35%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Time-dependent%20density%20matrix%20renormalization%20group%20quantum%20dynamics%20for%20realistic%20chemical%20systems&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Xie,%20Xiaoyu&rft.date=2019-12-14&rft.volume=151&rft.issue=22&rft.spage=224101&rft.epage=224101&rft.pages=224101-224101&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/1.5125945&rft_dat=%3Cproquest_pubme%3E2322936281%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2322936281&rft_id=info:pmid/31837675&rfr_iscdi=true