Classification of Mammogram Images Using Multiscale all Convolutional Neural Network (MA-CNN)
Breast cancer is one of the leading causes of cancer death among women in worldwide. Early diagnosis of breast cancer improves the chance of survival by aiding proper clinical treatments. The digital mammography examination helps in diagnosing the breast cancer at its earlier stage. In this paper, M...
Gespeichert in:
Veröffentlicht in: | Journal of medical systems 2020-01, Vol.44 (1), p.30-9, Article 30 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9 |
---|---|
container_issue | 1 |
container_start_page | 30 |
container_title | Journal of medical systems |
container_volume | 44 |
creator | Agnes, S. Akila Anitha, J. Pandian, S. Immanuel Alex Peter, J. Dinesh |
description | Breast cancer is one of the leading causes of cancer death among women in worldwide. Early diagnosis of breast cancer improves the chance of survival by aiding proper clinical treatments. The digital mammography examination helps in diagnosing the breast cancer at its earlier stage. In this paper, Multiscale All Convolutional Neural Network (MA-CNN) is developed to assist the radiologist in diagnosing the breast cancer effectively. MA-CNN is a convolutional neural network-based approach that classifies mammogram images accurately. Convolutional neural networks are excellent in extracting the task specific features, since the feature learning is associated with classification task in order to attain the improved performance. The proposed approach automatically categorizes the mammographic images on mini-MIAS dataset into normal, malignant and benign classes. This model improves the accuracy of the classification system by fusing the wider context of information using multiscale filters without negotiating the computation speed. Experimental results show that MA-CNN is a powerful tool for diagnosing breast cancer by means of classifying the mammogram images with overall sensitivity of 96% and 0.99 AUC. |
doi_str_mv | 10.1007/s10916-019-1494-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2327375745</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2327375745</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-428f55f47f6ee3ca8175346be98f99f02e1b71cafdc9b77340493674330151c43</originalsourceid><addsrcrecordid>eNp1kM1OGzEUhS0EKmnoA7CpLLGhC4Pv-G-8jEb9QSJhA1I3leVM7GioZxzsmSJ4-k4SWiQkVnfh75x7_SF0CvQCKFWXGagGSShoAlxz8nyAJiAUI7LUPw_RhAIviRC6PEYfc76nlGop1Qd0zKBkpQQ6Qb-qYHNufFPbvokdjh7PbdvGdbItvmrt2mV8l5tujedD6Jtc2-CwDQFXsfsTw7AN2YAXbki70T_G9Bufz2ekWiy-nKAjb0N2n17mFN19-3pb_SDXN9-vqtk1qZkqesKL0gvhufLSOVbbEpRgXC6dLr3WnhYOlgpq61e1XirFOOWaScUZoyCg5myKzve9mxQfBpd7046nuhBs5-KQTcEKxZRQXIzo2Rv0Pg5p_MOOkkzqYmSnCPZUnWLOyXmzSU1r05MBarbuzd69Gd2brXvzPGY-vzQPy9at_if-yR6BYg_k8albu_S6-v3WvywKjco</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2326369227</pqid></control><display><type>article</type><title>Classification of Mammogram Images Using Multiscale all Convolutional Neural Network (MA-CNN)</title><source>MEDLINE</source><source>SpringerLink Journals</source><creator>Agnes, S. Akila ; Anitha, J. ; Pandian, S. Immanuel Alex ; Peter, J. Dinesh</creator><creatorcontrib>Agnes, S. Akila ; Anitha, J. ; Pandian, S. Immanuel Alex ; Peter, J. Dinesh</creatorcontrib><description>Breast cancer is one of the leading causes of cancer death among women in worldwide. Early diagnosis of breast cancer improves the chance of survival by aiding proper clinical treatments. The digital mammography examination helps in diagnosing the breast cancer at its earlier stage. In this paper, Multiscale All Convolutional Neural Network (MA-CNN) is developed to assist the radiologist in diagnosing the breast cancer effectively. MA-CNN is a convolutional neural network-based approach that classifies mammogram images accurately. Convolutional neural networks are excellent in extracting the task specific features, since the feature learning is associated with classification task in order to attain the improved performance. The proposed approach automatically categorizes the mammographic images on mini-MIAS dataset into normal, malignant and benign classes. This model improves the accuracy of the classification system by fusing the wider context of information using multiscale filters without negotiating the computation speed. Experimental results show that MA-CNN is a powerful tool for diagnosing breast cancer by means of classifying the mammogram images with overall sensitivity of 96% and 0.99 AUC.</description><identifier>ISSN: 0148-5598</identifier><identifier>EISSN: 1573-689X</identifier><identifier>DOI: 10.1007/s10916-019-1494-z</identifier><identifier>PMID: 31838610</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Artificial neural networks ; Breast cancer ; Breast Neoplasms - pathology ; Classification ; Health Informatics ; Health Informatics and Computer Vision ; Health Sciences ; Humans ; Image & Signal Processing ; Image classification ; Image Interpretation, Computer-Assisted - methods ; Machine Learning ; Mammography ; Mammography - methods ; Medicine ; Medicine & Public Health ; Neural networks ; Neural Networks, Computer ; Recent Advances in Deep Learning for Biomedical Signal Processing ; Statistics for Life Sciences</subject><ispartof>Journal of medical systems, 2020-01, Vol.44 (1), p.30-9, Article 30</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>Journal of Medical Systems is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-428f55f47f6ee3ca8175346be98f99f02e1b71cafdc9b77340493674330151c43</citedby><cites>FETCH-LOGICAL-c372t-428f55f47f6ee3ca8175346be98f99f02e1b71cafdc9b77340493674330151c43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10916-019-1494-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10916-019-1494-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31838610$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Agnes, S. Akila</creatorcontrib><creatorcontrib>Anitha, J.</creatorcontrib><creatorcontrib>Pandian, S. Immanuel Alex</creatorcontrib><creatorcontrib>Peter, J. Dinesh</creatorcontrib><title>Classification of Mammogram Images Using Multiscale all Convolutional Neural Network (MA-CNN)</title><title>Journal of medical systems</title><addtitle>J Med Syst</addtitle><addtitle>J Med Syst</addtitle><description>Breast cancer is one of the leading causes of cancer death among women in worldwide. Early diagnosis of breast cancer improves the chance of survival by aiding proper clinical treatments. The digital mammography examination helps in diagnosing the breast cancer at its earlier stage. In this paper, Multiscale All Convolutional Neural Network (MA-CNN) is developed to assist the radiologist in diagnosing the breast cancer effectively. MA-CNN is a convolutional neural network-based approach that classifies mammogram images accurately. Convolutional neural networks are excellent in extracting the task specific features, since the feature learning is associated with classification task in order to attain the improved performance. The proposed approach automatically categorizes the mammographic images on mini-MIAS dataset into normal, malignant and benign classes. This model improves the accuracy of the classification system by fusing the wider context of information using multiscale filters without negotiating the computation speed. Experimental results show that MA-CNN is a powerful tool for diagnosing breast cancer by means of classifying the mammogram images with overall sensitivity of 96% and 0.99 AUC.</description><subject>Artificial neural networks</subject><subject>Breast cancer</subject><subject>Breast Neoplasms - pathology</subject><subject>Classification</subject><subject>Health Informatics</subject><subject>Health Informatics and Computer Vision</subject><subject>Health Sciences</subject><subject>Humans</subject><subject>Image & Signal Processing</subject><subject>Image classification</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Machine Learning</subject><subject>Mammography</subject><subject>Mammography - methods</subject><subject>Medicine</subject><subject>Medicine & Public Health</subject><subject>Neural networks</subject><subject>Neural Networks, Computer</subject><subject>Recent Advances in Deep Learning for Biomedical Signal Processing</subject><subject>Statistics for Life Sciences</subject><issn>0148-5598</issn><issn>1573-689X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kM1OGzEUhS0EKmnoA7CpLLGhC4Pv-G-8jEb9QSJhA1I3leVM7GioZxzsmSJ4-k4SWiQkVnfh75x7_SF0CvQCKFWXGagGSShoAlxz8nyAJiAUI7LUPw_RhAIviRC6PEYfc76nlGop1Qd0zKBkpQQ6Qb-qYHNufFPbvokdjh7PbdvGdbItvmrt2mV8l5tujedD6Jtc2-CwDQFXsfsTw7AN2YAXbki70T_G9Bufz2ekWiy-nKAjb0N2n17mFN19-3pb_SDXN9-vqtk1qZkqesKL0gvhufLSOVbbEpRgXC6dLr3WnhYOlgpq61e1XirFOOWaScUZoyCg5myKzve9mxQfBpd7046nuhBs5-KQTcEKxZRQXIzo2Rv0Pg5p_MOOkkzqYmSnCPZUnWLOyXmzSU1r05MBarbuzd69Gd2brXvzPGY-vzQPy9at_if-yR6BYg_k8albu_S6-v3WvywKjco</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Agnes, S. Akila</creator><creator>Anitha, J.</creator><creator>Pandian, S. Immanuel Alex</creator><creator>Peter, J. Dinesh</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7RV</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88C</scope><scope>88E</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>KB0</scope><scope>KR7</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M0S</scope><scope>M0T</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20200101</creationdate><title>Classification of Mammogram Images Using Multiscale all Convolutional Neural Network (MA-CNN)</title><author>Agnes, S. Akila ; Anitha, J. ; Pandian, S. Immanuel Alex ; Peter, J. Dinesh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-428f55f47f6ee3ca8175346be98f99f02e1b71cafdc9b77340493674330151c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Artificial neural networks</topic><topic>Breast cancer</topic><topic>Breast Neoplasms - pathology</topic><topic>Classification</topic><topic>Health Informatics</topic><topic>Health Informatics and Computer Vision</topic><topic>Health Sciences</topic><topic>Humans</topic><topic>Image & Signal Processing</topic><topic>Image classification</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Machine Learning</topic><topic>Mammography</topic><topic>Mammography - methods</topic><topic>Medicine</topic><topic>Medicine & Public Health</topic><topic>Neural networks</topic><topic>Neural Networks, Computer</topic><topic>Recent Advances in Deep Learning for Biomedical Signal Processing</topic><topic>Statistics for Life Sciences</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Agnes, S. Akila</creatorcontrib><creatorcontrib>Anitha, J.</creatorcontrib><creatorcontrib>Pandian, S. Immanuel Alex</creatorcontrib><creatorcontrib>Peter, J. Dinesh</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Healthcare Administration Database (Alumni)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Healthcare Administration Database</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of medical systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Agnes, S. Akila</au><au>Anitha, J.</au><au>Pandian, S. Immanuel Alex</au><au>Peter, J. Dinesh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Classification of Mammogram Images Using Multiscale all Convolutional Neural Network (MA-CNN)</atitle><jtitle>Journal of medical systems</jtitle><stitle>J Med Syst</stitle><addtitle>J Med Syst</addtitle><date>2020-01-01</date><risdate>2020</risdate><volume>44</volume><issue>1</issue><spage>30</spage><epage>9</epage><pages>30-9</pages><artnum>30</artnum><issn>0148-5598</issn><eissn>1573-689X</eissn><abstract>Breast cancer is one of the leading causes of cancer death among women in worldwide. Early diagnosis of breast cancer improves the chance of survival by aiding proper clinical treatments. The digital mammography examination helps in diagnosing the breast cancer at its earlier stage. In this paper, Multiscale All Convolutional Neural Network (MA-CNN) is developed to assist the radiologist in diagnosing the breast cancer effectively. MA-CNN is a convolutional neural network-based approach that classifies mammogram images accurately. Convolutional neural networks are excellent in extracting the task specific features, since the feature learning is associated with classification task in order to attain the improved performance. The proposed approach automatically categorizes the mammographic images on mini-MIAS dataset into normal, malignant and benign classes. This model improves the accuracy of the classification system by fusing the wider context of information using multiscale filters without negotiating the computation speed. Experimental results show that MA-CNN is a powerful tool for diagnosing breast cancer by means of classifying the mammogram images with overall sensitivity of 96% and 0.99 AUC.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>31838610</pmid><doi>10.1007/s10916-019-1494-z</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0148-5598 |
ispartof | Journal of medical systems, 2020-01, Vol.44 (1), p.30-9, Article 30 |
issn | 0148-5598 1573-689X |
language | eng |
recordid | cdi_proquest_miscellaneous_2327375745 |
source | MEDLINE; SpringerLink Journals |
subjects | Artificial neural networks Breast cancer Breast Neoplasms - pathology Classification Health Informatics Health Informatics and Computer Vision Health Sciences Humans Image & Signal Processing Image classification Image Interpretation, Computer-Assisted - methods Machine Learning Mammography Mammography - methods Medicine Medicine & Public Health Neural networks Neural Networks, Computer Recent Advances in Deep Learning for Biomedical Signal Processing Statistics for Life Sciences |
title | Classification of Mammogram Images Using Multiscale all Convolutional Neural Network (MA-CNN) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T04%3A22%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Classification%20of%20Mammogram%20Images%20Using%20Multiscale%20all%20Convolutional%20Neural%20Network%20(MA-CNN)&rft.jtitle=Journal%20of%20medical%20systems&rft.au=Agnes,%20S.%20Akila&rft.date=2020-01-01&rft.volume=44&rft.issue=1&rft.spage=30&rft.epage=9&rft.pages=30-9&rft.artnum=30&rft.issn=0148-5598&rft.eissn=1573-689X&rft_id=info:doi/10.1007/s10916-019-1494-z&rft_dat=%3Cproquest_cross%3E2327375745%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2326369227&rft_id=info:pmid/31838610&rfr_iscdi=true |