Neighboring gray level dependence matrix for texture classification
A new approach, neighboring gray level dependence matrix (NGLDM), for texture classification is presented. The major properties of this approach are as follows: (a) texture features can be easily computed; (b) they are essentially invariant under spatial rotation; (c) they are invariant under linear...
Gespeichert in:
Veröffentlicht in: | Computer vision, graphics, and image processing graphics, and image processing, 1983-01, Vol.23 (3), p.341-352 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 352 |
---|---|
container_issue | 3 |
container_start_page | 341 |
container_title | Computer vision, graphics, and image processing |
container_volume | 23 |
creator | Sun, Chengjun Wee, William G |
description | A new approach, neighboring gray level dependence matrix (NGLDM), for texture classification is presented. The major properties of this approach are as follows: (a) texture features can be easily computed; (b) they are essentially invariant under spatial rotation; (c) they are invariant under linear gray level transformation and can be made insensitive to monotonic gray level transformation. These properties have enhanced the practical applications of the texture features. The accuracies of the classification are comparable with those found in the literature. |
doi_str_mv | 10.1016/0734-189X(83)90032-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_23257413</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>0734189X83900324</els_id><sourcerecordid>23257413</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-98174a953d47fca9c6ea624e112b141df2780372cf7adf2c38a5abba7f7be2d73</originalsourceid><addsrcrecordid>eNp9kE1Lw0AQhhdRsFb_gYccRPQQ3c9schGk-AVFLwq9LZPNbF1Jk7qblvbfm9ji0dMw8LzvMA8h54zeMMqyW6qFTFlezK5ycV1QKngqD8iIKaXTvFCzQzL6Q47JSYxflPJCKToik1f088-yDb6ZJ_MA26TGNdZJhUtsKmwsJgvogt8krg1Jh5tuFTCxNcTonbfQ-bY5JUcO6ohn-zkmH48P75PndPr29DK5n6ZWMtWlRc60hEKJSmpnobAZQsYlMsZLJlnluM6p0Nw6Df1iRQ4KyhK00yXySosxudz1LkP7vcLYmYWPFusaGmxX0XDBlZZM9KDcgTa0MQZ0Zhn8AsLWMGoGY2bQYQYdJhfm15iRfexi3w_RQu0CNNbHv2yhspzSrMfudhj2v649BhOtH0xVPqDtTNX6_-_8AI4XgJs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>23257413</pqid></control><display><type>article</type><title>Neighboring gray level dependence matrix for texture classification</title><source>Alma/SFX Local Collection</source><creator>Sun, Chengjun ; Wee, William G</creator><creatorcontrib>Sun, Chengjun ; Wee, William G</creatorcontrib><description>A new approach, neighboring gray level dependence matrix (NGLDM), for texture classification is presented. The major properties of this approach are as follows: (a) texture features can be easily computed; (b) they are essentially invariant under spatial rotation; (c) they are invariant under linear gray level transformation and can be made insensitive to monotonic gray level transformation. These properties have enhanced the practical applications of the texture features. The accuracies of the classification are comparable with those found in the literature.</description><identifier>ISSN: 0734-189X</identifier><identifier>EISSN: 1557-895X</identifier><identifier>DOI: 10.1016/0734-189X(83)90032-4</identifier><identifier>CODEN: CVGPDB</identifier><language>eng</language><publisher>Boston, MA: Elsevier B.V</publisher><subject>Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Exact sciences and technology ; Pattern recognition. Digital image processing. Computational geometry</subject><ispartof>Computer vision, graphics, and image processing, 1983-01, Vol.23 (3), p.341-352</ispartof><rights>1983</rights><rights>1984 INIST-CNRS</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-98174a953d47fca9c6ea624e112b141df2780372cf7adf2c38a5abba7f7be2d73</citedby><cites>FETCH-LOGICAL-c415t-98174a953d47fca9c6ea624e112b141df2780372cf7adf2c38a5abba7f7be2d73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=9568006$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Sun, Chengjun</creatorcontrib><creatorcontrib>Wee, William G</creatorcontrib><title>Neighboring gray level dependence matrix for texture classification</title><title>Computer vision, graphics, and image processing</title><description>A new approach, neighboring gray level dependence matrix (NGLDM), for texture classification is presented. The major properties of this approach are as follows: (a) texture features can be easily computed; (b) they are essentially invariant under spatial rotation; (c) they are invariant under linear gray level transformation and can be made insensitive to monotonic gray level transformation. These properties have enhanced the practical applications of the texture features. The accuracies of the classification are comparable with those found in the literature.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><issn>0734-189X</issn><issn>1557-895X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1983</creationdate><recordtype>article</recordtype><recordid>eNp9kE1Lw0AQhhdRsFb_gYccRPQQ3c9schGk-AVFLwq9LZPNbF1Jk7qblvbfm9ji0dMw8LzvMA8h54zeMMqyW6qFTFlezK5ycV1QKngqD8iIKaXTvFCzQzL6Q47JSYxflPJCKToik1f088-yDb6ZJ_MA26TGNdZJhUtsKmwsJgvogt8krg1Jh5tuFTCxNcTonbfQ-bY5JUcO6ohn-zkmH48P75PndPr29DK5n6ZWMtWlRc60hEKJSmpnobAZQsYlMsZLJlnluM6p0Nw6Df1iRQ4KyhK00yXySosxudz1LkP7vcLYmYWPFusaGmxX0XDBlZZM9KDcgTa0MQZ0Zhn8AsLWMGoGY2bQYQYdJhfm15iRfexi3w_RQu0CNNbHv2yhspzSrMfudhj2v649BhOtH0xVPqDtTNX6_-_8AI4XgJs</recordid><startdate>19830101</startdate><enddate>19830101</enddate><creator>Sun, Chengjun</creator><creator>Wee, William G</creator><general>Elsevier B.V</general><general>Academic Press</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>19830101</creationdate><title>Neighboring gray level dependence matrix for texture classification</title><author>Sun, Chengjun ; Wee, William G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-98174a953d47fca9c6ea624e112b141df2780372cf7adf2c38a5abba7f7be2d73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1983</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><toplevel>online_resources</toplevel><creatorcontrib>Sun, Chengjun</creatorcontrib><creatorcontrib>Wee, William G</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Computer vision, graphics, and image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Chengjun</au><au>Wee, William G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neighboring gray level dependence matrix for texture classification</atitle><jtitle>Computer vision, graphics, and image processing</jtitle><date>1983-01-01</date><risdate>1983</risdate><volume>23</volume><issue>3</issue><spage>341</spage><epage>352</epage><pages>341-352</pages><issn>0734-189X</issn><eissn>1557-895X</eissn><coden>CVGPDB</coden><abstract>A new approach, neighboring gray level dependence matrix (NGLDM), for texture classification is presented. The major properties of this approach are as follows: (a) texture features can be easily computed; (b) they are essentially invariant under spatial rotation; (c) they are invariant under linear gray level transformation and can be made insensitive to monotonic gray level transformation. These properties have enhanced the practical applications of the texture features. The accuracies of the classification are comparable with those found in the literature.</abstract><cop>Boston, MA</cop><cop>San Diego, CA</cop><cop>New York, NY</cop><pub>Elsevier B.V</pub><doi>10.1016/0734-189X(83)90032-4</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0734-189X |
ispartof | Computer vision, graphics, and image processing, 1983-01, Vol.23 (3), p.341-352 |
issn | 0734-189X 1557-895X |
language | eng |
recordid | cdi_proquest_miscellaneous_23257413 |
source | Alma/SFX Local Collection |
subjects | Applied sciences Artificial intelligence Computer science control theory systems Exact sciences and technology Pattern recognition. Digital image processing. Computational geometry |
title | Neighboring gray level dependence matrix for texture classification |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T14%3A20%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neighboring%20gray%20level%20dependence%20matrix%20for%20texture%20classification&rft.jtitle=Computer%20vision,%20graphics,%20and%20image%20processing&rft.au=Sun,%20Chengjun&rft.date=1983-01-01&rft.volume=23&rft.issue=3&rft.spage=341&rft.epage=352&rft.pages=341-352&rft.issn=0734-189X&rft.eissn=1557-895X&rft.coden=CVGPDB&rft_id=info:doi/10.1016/0734-189X(83)90032-4&rft_dat=%3Cproquest_cross%3E23257413%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=23257413&rft_id=info:pmid/&rft_els_id=0734189X83900324&rfr_iscdi=true |