Neighboring gray level dependence matrix for texture classification

A new approach, neighboring gray level dependence matrix (NGLDM), for texture classification is presented. The major properties of this approach are as follows: (a) texture features can be easily computed; (b) they are essentially invariant under spatial rotation; (c) they are invariant under linear...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer vision, graphics, and image processing graphics, and image processing, 1983-01, Vol.23 (3), p.341-352
Hauptverfasser: Sun, Chengjun, Wee, William G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 352
container_issue 3
container_start_page 341
container_title Computer vision, graphics, and image processing
container_volume 23
creator Sun, Chengjun
Wee, William G
description A new approach, neighboring gray level dependence matrix (NGLDM), for texture classification is presented. The major properties of this approach are as follows: (a) texture features can be easily computed; (b) they are essentially invariant under spatial rotation; (c) they are invariant under linear gray level transformation and can be made insensitive to monotonic gray level transformation. These properties have enhanced the practical applications of the texture features. The accuracies of the classification are comparable with those found in the literature.
doi_str_mv 10.1016/0734-189X(83)90032-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_23257413</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>0734189X83900324</els_id><sourcerecordid>23257413</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-98174a953d47fca9c6ea624e112b141df2780372cf7adf2c38a5abba7f7be2d73</originalsourceid><addsrcrecordid>eNp9kE1Lw0AQhhdRsFb_gYccRPQQ3c9schGk-AVFLwq9LZPNbF1Jk7qblvbfm9ji0dMw8LzvMA8h54zeMMqyW6qFTFlezK5ycV1QKngqD8iIKaXTvFCzQzL6Q47JSYxflPJCKToik1f088-yDb6ZJ_MA26TGNdZJhUtsKmwsJgvogt8krg1Jh5tuFTCxNcTonbfQ-bY5JUcO6ohn-zkmH48P75PndPr29DK5n6ZWMtWlRc60hEKJSmpnobAZQsYlMsZLJlnluM6p0Nw6Df1iRQ4KyhK00yXySosxudz1LkP7vcLYmYWPFusaGmxX0XDBlZZM9KDcgTa0MQZ0Zhn8AsLWMGoGY2bQYQYdJhfm15iRfexi3w_RQu0CNNbHv2yhspzSrMfudhj2v649BhOtH0xVPqDtTNX6_-_8AI4XgJs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>23257413</pqid></control><display><type>article</type><title>Neighboring gray level dependence matrix for texture classification</title><source>Alma/SFX Local Collection</source><creator>Sun, Chengjun ; Wee, William G</creator><creatorcontrib>Sun, Chengjun ; Wee, William G</creatorcontrib><description>A new approach, neighboring gray level dependence matrix (NGLDM), for texture classification is presented. The major properties of this approach are as follows: (a) texture features can be easily computed; (b) they are essentially invariant under spatial rotation; (c) they are invariant under linear gray level transformation and can be made insensitive to monotonic gray level transformation. These properties have enhanced the practical applications of the texture features. The accuracies of the classification are comparable with those found in the literature.</description><identifier>ISSN: 0734-189X</identifier><identifier>EISSN: 1557-895X</identifier><identifier>DOI: 10.1016/0734-189X(83)90032-4</identifier><identifier>CODEN: CVGPDB</identifier><language>eng</language><publisher>Boston, MA: Elsevier B.V</publisher><subject>Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Exact sciences and technology ; Pattern recognition. Digital image processing. Computational geometry</subject><ispartof>Computer vision, graphics, and image processing, 1983-01, Vol.23 (3), p.341-352</ispartof><rights>1983</rights><rights>1984 INIST-CNRS</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-98174a953d47fca9c6ea624e112b141df2780372cf7adf2c38a5abba7f7be2d73</citedby><cites>FETCH-LOGICAL-c415t-98174a953d47fca9c6ea624e112b141df2780372cf7adf2c38a5abba7f7be2d73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=9568006$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Sun, Chengjun</creatorcontrib><creatorcontrib>Wee, William G</creatorcontrib><title>Neighboring gray level dependence matrix for texture classification</title><title>Computer vision, graphics, and image processing</title><description>A new approach, neighboring gray level dependence matrix (NGLDM), for texture classification is presented. The major properties of this approach are as follows: (a) texture features can be easily computed; (b) they are essentially invariant under spatial rotation; (c) they are invariant under linear gray level transformation and can be made insensitive to monotonic gray level transformation. These properties have enhanced the practical applications of the texture features. The accuracies of the classification are comparable with those found in the literature.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><issn>0734-189X</issn><issn>1557-895X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1983</creationdate><recordtype>article</recordtype><recordid>eNp9kE1Lw0AQhhdRsFb_gYccRPQQ3c9schGk-AVFLwq9LZPNbF1Jk7qblvbfm9ji0dMw8LzvMA8h54zeMMqyW6qFTFlezK5ycV1QKngqD8iIKaXTvFCzQzL6Q47JSYxflPJCKToik1f088-yDb6ZJ_MA26TGNdZJhUtsKmwsJgvogt8krg1Jh5tuFTCxNcTonbfQ-bY5JUcO6ohn-zkmH48P75PndPr29DK5n6ZWMtWlRc60hEKJSmpnobAZQsYlMsZLJlnluM6p0Nw6Df1iRQ4KyhK00yXySosxudz1LkP7vcLYmYWPFusaGmxX0XDBlZZM9KDcgTa0MQZ0Zhn8AsLWMGoGY2bQYQYdJhfm15iRfexi3w_RQu0CNNbHv2yhspzSrMfudhj2v649BhOtH0xVPqDtTNX6_-_8AI4XgJs</recordid><startdate>19830101</startdate><enddate>19830101</enddate><creator>Sun, Chengjun</creator><creator>Wee, William G</creator><general>Elsevier B.V</general><general>Academic Press</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>19830101</creationdate><title>Neighboring gray level dependence matrix for texture classification</title><author>Sun, Chengjun ; Wee, William G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-98174a953d47fca9c6ea624e112b141df2780372cf7adf2c38a5abba7f7be2d73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1983</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><toplevel>online_resources</toplevel><creatorcontrib>Sun, Chengjun</creatorcontrib><creatorcontrib>Wee, William G</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Computer vision, graphics, and image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Chengjun</au><au>Wee, William G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neighboring gray level dependence matrix for texture classification</atitle><jtitle>Computer vision, graphics, and image processing</jtitle><date>1983-01-01</date><risdate>1983</risdate><volume>23</volume><issue>3</issue><spage>341</spage><epage>352</epage><pages>341-352</pages><issn>0734-189X</issn><eissn>1557-895X</eissn><coden>CVGPDB</coden><abstract>A new approach, neighboring gray level dependence matrix (NGLDM), for texture classification is presented. The major properties of this approach are as follows: (a) texture features can be easily computed; (b) they are essentially invariant under spatial rotation; (c) they are invariant under linear gray level transformation and can be made insensitive to monotonic gray level transformation. These properties have enhanced the practical applications of the texture features. The accuracies of the classification are comparable with those found in the literature.</abstract><cop>Boston, MA</cop><cop>San Diego, CA</cop><cop>New York, NY</cop><pub>Elsevier B.V</pub><doi>10.1016/0734-189X(83)90032-4</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0734-189X
ispartof Computer vision, graphics, and image processing, 1983-01, Vol.23 (3), p.341-352
issn 0734-189X
1557-895X
language eng
recordid cdi_proquest_miscellaneous_23257413
source Alma/SFX Local Collection
subjects Applied sciences
Artificial intelligence
Computer science
control theory
systems
Exact sciences and technology
Pattern recognition. Digital image processing. Computational geometry
title Neighboring gray level dependence matrix for texture classification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T14%3A20%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neighboring%20gray%20level%20dependence%20matrix%20for%20texture%20classification&rft.jtitle=Computer%20vision,%20graphics,%20and%20image%20processing&rft.au=Sun,%20Chengjun&rft.date=1983-01-01&rft.volume=23&rft.issue=3&rft.spage=341&rft.epage=352&rft.pages=341-352&rft.issn=0734-189X&rft.eissn=1557-895X&rft.coden=CVGPDB&rft_id=info:doi/10.1016/0734-189X(83)90032-4&rft_dat=%3Cproquest_cross%3E23257413%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=23257413&rft_id=info:pmid/&rft_els_id=0734189X83900324&rfr_iscdi=true