A variational theory of immiscible mixtures

A continuum theory is presented for mixtures whose constituents remain physically separate, such as a mixture of immiscible liquids or a fluid containing a distribution of particles, droplets, or bubbles. The theory reported does model local volume changes of the constituents, although it does not m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Archive for rational mechanics and analysis 1978-03, Vol.68 (1), p.37-51
Hauptverfasser: Bedford, A., Drumheller, D. S.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 51
container_issue 1
container_start_page 37
container_title Archive for rational mechanics and analysis
container_volume 68
creator Bedford, A.
Drumheller, D. S.
description A continuum theory is presented for mixtures whose constituents remain physically separate, such as a mixture of immiscible liquids or a fluid containing a distribution of particles, droplets, or bubbles. The theory reported does model local volume changes of the constituents, although it does not model more complex changes in the local structure. The change in the local volume of a constituent is measured in the theory by the volume fraction which, in the case of a compressible constituent, is independent of the partial density of the constituent. A theory of mixtures with a microstructure of a particularly simple type is, therefore, obtained. The equations of motion for the constituents are obtained by an application of Hamilton's extended variational principle.
doi_str_mv 10.1007/BF00276178
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_23254742</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>23254742</sourcerecordid><originalsourceid>FETCH-LOGICAL-c260t-fa392df0c4b75bfaef65f7be70c2c4d28972ff0ed396ef29f4f911754ec0d7ff3</originalsourceid><addsrcrecordid>eNpFkMFKxDAURYMoWEc3fkFXLpTqy0vaTJbj4Kgw4EbXJU3fw0g7HZNWnL_XYQRXlwuHy-UIcSnhVgKYu_sVAJpKmvmRyKRWWEBl1LHIAEAVtkRzKs5S-thXVFUmbhb5l4vBjWHYuC4f32mIu3zgPPR9SD40HeV9-B6nSOlcnLDrEl385Uy8rR5el0_F-uXxeblYFx4rGAt2ymLL4HVjyoYdcVWyaciAR69bnFuDzECtshUxWtZspTSlJg-tYVYzcXXY3cbhc6I01vsr1HVuQ8OUalRYaqPxF7w-gD4OKUXiehtD7-KullDvfdT_PtQPcaJSTw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>23254742</pqid></control><display><type>article</type><title>A variational theory of immiscible mixtures</title><source>Springer Nature - Complete Springer Journals</source><creator>Bedford, A. ; Drumheller, D. S.</creator><creatorcontrib>Bedford, A. ; Drumheller, D. S.</creatorcontrib><description>A continuum theory is presented for mixtures whose constituents remain physically separate, such as a mixture of immiscible liquids or a fluid containing a distribution of particles, droplets, or bubbles. The theory reported does model local volume changes of the constituents, although it does not model more complex changes in the local structure. The change in the local volume of a constituent is measured in the theory by the volume fraction which, in the case of a compressible constituent, is independent of the partial density of the constituent. A theory of mixtures with a microstructure of a particularly simple type is, therefore, obtained. The equations of motion for the constituents are obtained by an application of Hamilton's extended variational principle.</description><identifier>ISSN: 0003-9527</identifier><identifier>EISSN: 1432-0673</identifier><identifier>DOI: 10.1007/BF00276178</identifier><language>eng</language><ispartof>Archive for rational mechanics and analysis, 1978-03, Vol.68 (1), p.37-51</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c260t-fa392df0c4b75bfaef65f7be70c2c4d28972ff0ed396ef29f4f911754ec0d7ff3</citedby><cites>FETCH-LOGICAL-c260t-fa392df0c4b75bfaef65f7be70c2c4d28972ff0ed396ef29f4f911754ec0d7ff3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Bedford, A.</creatorcontrib><creatorcontrib>Drumheller, D. S.</creatorcontrib><title>A variational theory of immiscible mixtures</title><title>Archive for rational mechanics and analysis</title><description>A continuum theory is presented for mixtures whose constituents remain physically separate, such as a mixture of immiscible liquids or a fluid containing a distribution of particles, droplets, or bubbles. The theory reported does model local volume changes of the constituents, although it does not model more complex changes in the local structure. The change in the local volume of a constituent is measured in the theory by the volume fraction which, in the case of a compressible constituent, is independent of the partial density of the constituent. A theory of mixtures with a microstructure of a particularly simple type is, therefore, obtained. The equations of motion for the constituents are obtained by an application of Hamilton's extended variational principle.</description><issn>0003-9527</issn><issn>1432-0673</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1978</creationdate><recordtype>article</recordtype><recordid>eNpFkMFKxDAURYMoWEc3fkFXLpTqy0vaTJbj4Kgw4EbXJU3fw0g7HZNWnL_XYQRXlwuHy-UIcSnhVgKYu_sVAJpKmvmRyKRWWEBl1LHIAEAVtkRzKs5S-thXVFUmbhb5l4vBjWHYuC4f32mIu3zgPPR9SD40HeV9-B6nSOlcnLDrEl385Uy8rR5el0_F-uXxeblYFx4rGAt2ymLL4HVjyoYdcVWyaciAR69bnFuDzECtshUxWtZspTSlJg-tYVYzcXXY3cbhc6I01vsr1HVuQ8OUalRYaqPxF7w-gD4OKUXiehtD7-KullDvfdT_PtQPcaJSTw</recordid><startdate>197803</startdate><enddate>197803</enddate><creator>Bedford, A.</creator><creator>Drumheller, D. S.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>197803</creationdate><title>A variational theory of immiscible mixtures</title><author>Bedford, A. ; Drumheller, D. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c260t-fa392df0c4b75bfaef65f7be70c2c4d28972ff0ed396ef29f4f911754ec0d7ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1978</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bedford, A.</creatorcontrib><creatorcontrib>Drumheller, D. S.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Archive for rational mechanics and analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bedford, A.</au><au>Drumheller, D. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A variational theory of immiscible mixtures</atitle><jtitle>Archive for rational mechanics and analysis</jtitle><date>1978-03</date><risdate>1978</risdate><volume>68</volume><issue>1</issue><spage>37</spage><epage>51</epage><pages>37-51</pages><issn>0003-9527</issn><eissn>1432-0673</eissn><abstract>A continuum theory is presented for mixtures whose constituents remain physically separate, such as a mixture of immiscible liquids or a fluid containing a distribution of particles, droplets, or bubbles. The theory reported does model local volume changes of the constituents, although it does not model more complex changes in the local structure. The change in the local volume of a constituent is measured in the theory by the volume fraction which, in the case of a compressible constituent, is independent of the partial density of the constituent. A theory of mixtures with a microstructure of a particularly simple type is, therefore, obtained. The equations of motion for the constituents are obtained by an application of Hamilton's extended variational principle.</abstract><doi>10.1007/BF00276178</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-9527
ispartof Archive for rational mechanics and analysis, 1978-03, Vol.68 (1), p.37-51
issn 0003-9527
1432-0673
language eng
recordid cdi_proquest_miscellaneous_23254742
source Springer Nature - Complete Springer Journals
title A variational theory of immiscible mixtures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T17%3A51%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20variational%20theory%20of%20immiscible%20mixtures&rft.jtitle=Archive%20for%20rational%20mechanics%20and%20analysis&rft.au=Bedford,%20A.&rft.date=1978-03&rft.volume=68&rft.issue=1&rft.spage=37&rft.epage=51&rft.pages=37-51&rft.issn=0003-9527&rft.eissn=1432-0673&rft_id=info:doi/10.1007/BF00276178&rft_dat=%3Cproquest_cross%3E23254742%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=23254742&rft_id=info:pmid/&rfr_iscdi=true