A variational theory of immiscible mixtures
A continuum theory is presented for mixtures whose constituents remain physically separate, such as a mixture of immiscible liquids or a fluid containing a distribution of particles, droplets, or bubbles. The theory reported does model local volume changes of the constituents, although it does not m...
Gespeichert in:
Veröffentlicht in: | Archive for rational mechanics and analysis 1978-03, Vol.68 (1), p.37-51 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 51 |
---|---|
container_issue | 1 |
container_start_page | 37 |
container_title | Archive for rational mechanics and analysis |
container_volume | 68 |
creator | Bedford, A. Drumheller, D. S. |
description | A continuum theory is presented for mixtures whose constituents remain physically separate, such as a mixture of immiscible liquids or a fluid containing a distribution of particles, droplets, or bubbles. The theory reported does model local volume changes of the constituents, although it does not model more complex changes in the local structure. The change in the local volume of a constituent is measured in the theory by the volume fraction which, in the case of a compressible constituent, is independent of the partial density of the constituent. A theory of mixtures with a microstructure of a particularly simple type is, therefore, obtained. The equations of motion for the constituents are obtained by an application of Hamilton's extended variational principle. |
doi_str_mv | 10.1007/BF00276178 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_23254742</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>23254742</sourcerecordid><originalsourceid>FETCH-LOGICAL-c260t-fa392df0c4b75bfaef65f7be70c2c4d28972ff0ed396ef29f4f911754ec0d7ff3</originalsourceid><addsrcrecordid>eNpFkMFKxDAURYMoWEc3fkFXLpTqy0vaTJbj4Kgw4EbXJU3fw0g7HZNWnL_XYQRXlwuHy-UIcSnhVgKYu_sVAJpKmvmRyKRWWEBl1LHIAEAVtkRzKs5S-thXVFUmbhb5l4vBjWHYuC4f32mIu3zgPPR9SD40HeV9-B6nSOlcnLDrEl385Uy8rR5el0_F-uXxeblYFx4rGAt2ymLL4HVjyoYdcVWyaciAR69bnFuDzECtshUxWtZspTSlJg-tYVYzcXXY3cbhc6I01vsr1HVuQ8OUalRYaqPxF7w-gD4OKUXiehtD7-KullDvfdT_PtQPcaJSTw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>23254742</pqid></control><display><type>article</type><title>A variational theory of immiscible mixtures</title><source>Springer Nature - Complete Springer Journals</source><creator>Bedford, A. ; Drumheller, D. S.</creator><creatorcontrib>Bedford, A. ; Drumheller, D. S.</creatorcontrib><description>A continuum theory is presented for mixtures whose constituents remain physically separate, such as a mixture of immiscible liquids or a fluid containing a distribution of particles, droplets, or bubbles. The theory reported does model local volume changes of the constituents, although it does not model more complex changes in the local structure. The change in the local volume of a constituent is measured in the theory by the volume fraction which, in the case of a compressible constituent, is independent of the partial density of the constituent. A theory of mixtures with a microstructure of a particularly simple type is, therefore, obtained. The equations of motion for the constituents are obtained by an application of Hamilton's extended variational principle.</description><identifier>ISSN: 0003-9527</identifier><identifier>EISSN: 1432-0673</identifier><identifier>DOI: 10.1007/BF00276178</identifier><language>eng</language><ispartof>Archive for rational mechanics and analysis, 1978-03, Vol.68 (1), p.37-51</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c260t-fa392df0c4b75bfaef65f7be70c2c4d28972ff0ed396ef29f4f911754ec0d7ff3</citedby><cites>FETCH-LOGICAL-c260t-fa392df0c4b75bfaef65f7be70c2c4d28972ff0ed396ef29f4f911754ec0d7ff3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Bedford, A.</creatorcontrib><creatorcontrib>Drumheller, D. S.</creatorcontrib><title>A variational theory of immiscible mixtures</title><title>Archive for rational mechanics and analysis</title><description>A continuum theory is presented for mixtures whose constituents remain physically separate, such as a mixture of immiscible liquids or a fluid containing a distribution of particles, droplets, or bubbles. The theory reported does model local volume changes of the constituents, although it does not model more complex changes in the local structure. The change in the local volume of a constituent is measured in the theory by the volume fraction which, in the case of a compressible constituent, is independent of the partial density of the constituent. A theory of mixtures with a microstructure of a particularly simple type is, therefore, obtained. The equations of motion for the constituents are obtained by an application of Hamilton's extended variational principle.</description><issn>0003-9527</issn><issn>1432-0673</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1978</creationdate><recordtype>article</recordtype><recordid>eNpFkMFKxDAURYMoWEc3fkFXLpTqy0vaTJbj4Kgw4EbXJU3fw0g7HZNWnL_XYQRXlwuHy-UIcSnhVgKYu_sVAJpKmvmRyKRWWEBl1LHIAEAVtkRzKs5S-thXVFUmbhb5l4vBjWHYuC4f32mIu3zgPPR9SD40HeV9-B6nSOlcnLDrEl385Uy8rR5el0_F-uXxeblYFx4rGAt2ymLL4HVjyoYdcVWyaciAR69bnFuDzECtshUxWtZspTSlJg-tYVYzcXXY3cbhc6I01vsr1HVuQ8OUalRYaqPxF7w-gD4OKUXiehtD7-KullDvfdT_PtQPcaJSTw</recordid><startdate>197803</startdate><enddate>197803</enddate><creator>Bedford, A.</creator><creator>Drumheller, D. S.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>197803</creationdate><title>A variational theory of immiscible mixtures</title><author>Bedford, A. ; Drumheller, D. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c260t-fa392df0c4b75bfaef65f7be70c2c4d28972ff0ed396ef29f4f911754ec0d7ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1978</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bedford, A.</creatorcontrib><creatorcontrib>Drumheller, D. S.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Archive for rational mechanics and analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bedford, A.</au><au>Drumheller, D. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A variational theory of immiscible mixtures</atitle><jtitle>Archive for rational mechanics and analysis</jtitle><date>1978-03</date><risdate>1978</risdate><volume>68</volume><issue>1</issue><spage>37</spage><epage>51</epage><pages>37-51</pages><issn>0003-9527</issn><eissn>1432-0673</eissn><abstract>A continuum theory is presented for mixtures whose constituents remain physically separate, such as a mixture of immiscible liquids or a fluid containing a distribution of particles, droplets, or bubbles. The theory reported does model local volume changes of the constituents, although it does not model more complex changes in the local structure. The change in the local volume of a constituent is measured in the theory by the volume fraction which, in the case of a compressible constituent, is independent of the partial density of the constituent. A theory of mixtures with a microstructure of a particularly simple type is, therefore, obtained. The equations of motion for the constituents are obtained by an application of Hamilton's extended variational principle.</abstract><doi>10.1007/BF00276178</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-9527 |
ispartof | Archive for rational mechanics and analysis, 1978-03, Vol.68 (1), p.37-51 |
issn | 0003-9527 1432-0673 |
language | eng |
recordid | cdi_proquest_miscellaneous_23254742 |
source | Springer Nature - Complete Springer Journals |
title | A variational theory of immiscible mixtures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T17%3A51%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20variational%20theory%20of%20immiscible%20mixtures&rft.jtitle=Archive%20for%20rational%20mechanics%20and%20analysis&rft.au=Bedford,%20A.&rft.date=1978-03&rft.volume=68&rft.issue=1&rft.spage=37&rft.epage=51&rft.pages=37-51&rft.issn=0003-9527&rft.eissn=1432-0673&rft_id=info:doi/10.1007/BF00276178&rft_dat=%3Cproquest_cross%3E23254742%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=23254742&rft_id=info:pmid/&rfr_iscdi=true |