Strain-Level Identification of Bacterial Tomato Pathogens Directly from Metagenomic Sequences

Routine strain-level identification of plant pathogens directly from symptomatic tissue could significantly improve plant disease control and prevention. Here we tested the Oxford Nanopore Technologies (ONT) MinION sequencer for metagenomic sequencing of tomato plants either artificially inoculated...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Phytopathology 2020-04, Vol.110 (4), p.768-779
Hauptverfasser: Mechan Llontop, Marco E, Sharma, Parul, Aguilera Flores, Marcela, Yang, Shu, Pollok, Jill, Tian, Long, Huang, Chenjie, Rideout, Steve, Heath, Lenwood S, Li, Song, Vinatzer, Boris A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 779
container_issue 4
container_start_page 768
container_title Phytopathology
container_volume 110
creator Mechan Llontop, Marco E
Sharma, Parul
Aguilera Flores, Marcela
Yang, Shu
Pollok, Jill
Tian, Long
Huang, Chenjie
Rideout, Steve
Heath, Lenwood S
Li, Song
Vinatzer, Boris A
description Routine strain-level identification of plant pathogens directly from symptomatic tissue could significantly improve plant disease control and prevention. Here we tested the Oxford Nanopore Technologies (ONT) MinION sequencer for metagenomic sequencing of tomato plants either artificially inoculated with a known strain of the bacterial speck pathogen pv. or collected in the field and showing bacterial spot symptoms caused by one of four species. After species-level identification via ONT's WIMP software and the third-party tools Sourmash and MetaMaps, we used Sourmash and MetaMaps with a custom database of representative genomes of bacterial tomato pathogens to attempt strain-level identification. In parallel, each metagenome was assembled and the longest contigs were used as query with the genome-based microbial identification Web service LINbase. Both the read-based and assembly-based approaches correctly identified pv. strain T1 in the artificially inoculated samples. The pathogen strain in most field samples was identified as a member of group 2. This result was confirmed by whole genome sequencing of colonies isolated from one of the samples. Although in our case metagenome-based pathogen identification at the strain level was achieved, caution still must be exercised in interpreting strain-level results because of the challenges inherent to assigning reads to specific strains and the error rate of nanopore sequencing.
doi_str_mv 10.1094/PHYTO-09-19-0351-R
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2325297919</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2325297919</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-47938732c6e0ac4ca2a99e89cdaf591129cb6b48ba05827b7e59d1eeeac7acc03</originalsourceid><addsrcrecordid>eNo9kEtPHDEQhC0EguXxB3JAPnIx8WNmPH1MSAJIG4FgI4VDZPV4e4ijmTGxvZH49wzhcSqpVVVd-hj7oOSpklB9vL64W10JCUKBkKZW4maLLRRURtimrbbZQkqjBFTwc4_t5_xHSmnbutlle0a1GpRqFuzXbUkYJrGkfzTwyzVNJfTBYwlx4rHnn9EXSgEHvoojlsivsfyO9zRl_iUk8mV45H2KI_9OBedzHIPnt_R3Q5OnfMh2ehwyHb3qAfvx7evq7EIsr84vzz4thTeVLaKyYFprtG9Ioq88agSgFvwa-3reqcF3TVe1Hcq61bazVMNaERF6i95Lc8BOXnofUpxf5-LGkD0NA04UN9lpo2sNFhTMVv1i9SnmnKh3DymMmB6dku4Zq_uP1UlwCtwzVnczh45f-zfdSOv3yBtH8wRD8XWm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2325297919</pqid></control><display><type>article</type><title>Strain-Level Identification of Bacterial Tomato Pathogens Directly from Metagenomic Sequences</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><source>American Phytopathological Society Journal Back Issues</source><creator>Mechan Llontop, Marco E ; Sharma, Parul ; Aguilera Flores, Marcela ; Yang, Shu ; Pollok, Jill ; Tian, Long ; Huang, Chenjie ; Rideout, Steve ; Heath, Lenwood S ; Li, Song ; Vinatzer, Boris A</creator><creatorcontrib>Mechan Llontop, Marco E ; Sharma, Parul ; Aguilera Flores, Marcela ; Yang, Shu ; Pollok, Jill ; Tian, Long ; Huang, Chenjie ; Rideout, Steve ; Heath, Lenwood S ; Li, Song ; Vinatzer, Boris A</creatorcontrib><description>Routine strain-level identification of plant pathogens directly from symptomatic tissue could significantly improve plant disease control and prevention. Here we tested the Oxford Nanopore Technologies (ONT) MinION sequencer for metagenomic sequencing of tomato plants either artificially inoculated with a known strain of the bacterial speck pathogen pv. or collected in the field and showing bacterial spot symptoms caused by one of four species. After species-level identification via ONT's WIMP software and the third-party tools Sourmash and MetaMaps, we used Sourmash and MetaMaps with a custom database of representative genomes of bacterial tomato pathogens to attempt strain-level identification. In parallel, each metagenome was assembled and the longest contigs were used as query with the genome-based microbial identification Web service LINbase. Both the read-based and assembly-based approaches correctly identified pv. strain T1 in the artificially inoculated samples. The pathogen strain in most field samples was identified as a member of group 2. This result was confirmed by whole genome sequencing of colonies isolated from one of the samples. Although in our case metagenome-based pathogen identification at the strain level was achieved, caution still must be exercised in interpreting strain-level results because of the challenges inherent to assigning reads to specific strains and the error rate of nanopore sequencing.</description><identifier>ISSN: 0031-949X</identifier><identifier>EISSN: 1943-7684</identifier><identifier>DOI: 10.1094/PHYTO-09-19-0351-R</identifier><identifier>PMID: 31829116</identifier><language>eng</language><publisher>United States</publisher><subject>Bacteria ; Lycopersicon esculentum ; Metagenome ; Plant Diseases ; Xanthomonas</subject><ispartof>Phytopathology, 2020-04, Vol.110 (4), p.768-779</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-47938732c6e0ac4ca2a99e89cdaf591129cb6b48ba05827b7e59d1eeeac7acc03</citedby><cites>FETCH-LOGICAL-c347t-47938732c6e0ac4ca2a99e89cdaf591129cb6b48ba05827b7e59d1eeeac7acc03</cites><orcidid>0000-0001-5644-4768</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3724,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31829116$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mechan Llontop, Marco E</creatorcontrib><creatorcontrib>Sharma, Parul</creatorcontrib><creatorcontrib>Aguilera Flores, Marcela</creatorcontrib><creatorcontrib>Yang, Shu</creatorcontrib><creatorcontrib>Pollok, Jill</creatorcontrib><creatorcontrib>Tian, Long</creatorcontrib><creatorcontrib>Huang, Chenjie</creatorcontrib><creatorcontrib>Rideout, Steve</creatorcontrib><creatorcontrib>Heath, Lenwood S</creatorcontrib><creatorcontrib>Li, Song</creatorcontrib><creatorcontrib>Vinatzer, Boris A</creatorcontrib><title>Strain-Level Identification of Bacterial Tomato Pathogens Directly from Metagenomic Sequences</title><title>Phytopathology</title><addtitle>Phytopathology</addtitle><description>Routine strain-level identification of plant pathogens directly from symptomatic tissue could significantly improve plant disease control and prevention. Here we tested the Oxford Nanopore Technologies (ONT) MinION sequencer for metagenomic sequencing of tomato plants either artificially inoculated with a known strain of the bacterial speck pathogen pv. or collected in the field and showing bacterial spot symptoms caused by one of four species. After species-level identification via ONT's WIMP software and the third-party tools Sourmash and MetaMaps, we used Sourmash and MetaMaps with a custom database of representative genomes of bacterial tomato pathogens to attempt strain-level identification. In parallel, each metagenome was assembled and the longest contigs were used as query with the genome-based microbial identification Web service LINbase. Both the read-based and assembly-based approaches correctly identified pv. strain T1 in the artificially inoculated samples. The pathogen strain in most field samples was identified as a member of group 2. This result was confirmed by whole genome sequencing of colonies isolated from one of the samples. Although in our case metagenome-based pathogen identification at the strain level was achieved, caution still must be exercised in interpreting strain-level results because of the challenges inherent to assigning reads to specific strains and the error rate of nanopore sequencing.</description><subject>Bacteria</subject><subject>Lycopersicon esculentum</subject><subject>Metagenome</subject><subject>Plant Diseases</subject><subject>Xanthomonas</subject><issn>0031-949X</issn><issn>1943-7684</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo9kEtPHDEQhC0EguXxB3JAPnIx8WNmPH1MSAJIG4FgI4VDZPV4e4ijmTGxvZH49wzhcSqpVVVd-hj7oOSpklB9vL64W10JCUKBkKZW4maLLRRURtimrbbZQkqjBFTwc4_t5_xHSmnbutlle0a1GpRqFuzXbUkYJrGkfzTwyzVNJfTBYwlx4rHnn9EXSgEHvoojlsivsfyO9zRl_iUk8mV45H2KI_9OBedzHIPnt_R3Q5OnfMh2ehwyHb3qAfvx7evq7EIsr84vzz4thTeVLaKyYFprtG9Ioq88agSgFvwa-3reqcF3TVe1Hcq61bazVMNaERF6i95Lc8BOXnofUpxf5-LGkD0NA04UN9lpo2sNFhTMVv1i9SnmnKh3DymMmB6dku4Zq_uP1UlwCtwzVnczh45f-zfdSOv3yBtH8wRD8XWm</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Mechan Llontop, Marco E</creator><creator>Sharma, Parul</creator><creator>Aguilera Flores, Marcela</creator><creator>Yang, Shu</creator><creator>Pollok, Jill</creator><creator>Tian, Long</creator><creator>Huang, Chenjie</creator><creator>Rideout, Steve</creator><creator>Heath, Lenwood S</creator><creator>Li, Song</creator><creator>Vinatzer, Boris A</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5644-4768</orcidid></search><sort><creationdate>20200401</creationdate><title>Strain-Level Identification of Bacterial Tomato Pathogens Directly from Metagenomic Sequences</title><author>Mechan Llontop, Marco E ; Sharma, Parul ; Aguilera Flores, Marcela ; Yang, Shu ; Pollok, Jill ; Tian, Long ; Huang, Chenjie ; Rideout, Steve ; Heath, Lenwood S ; Li, Song ; Vinatzer, Boris A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-47938732c6e0ac4ca2a99e89cdaf591129cb6b48ba05827b7e59d1eeeac7acc03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Bacteria</topic><topic>Lycopersicon esculentum</topic><topic>Metagenome</topic><topic>Plant Diseases</topic><topic>Xanthomonas</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mechan Llontop, Marco E</creatorcontrib><creatorcontrib>Sharma, Parul</creatorcontrib><creatorcontrib>Aguilera Flores, Marcela</creatorcontrib><creatorcontrib>Yang, Shu</creatorcontrib><creatorcontrib>Pollok, Jill</creatorcontrib><creatorcontrib>Tian, Long</creatorcontrib><creatorcontrib>Huang, Chenjie</creatorcontrib><creatorcontrib>Rideout, Steve</creatorcontrib><creatorcontrib>Heath, Lenwood S</creatorcontrib><creatorcontrib>Li, Song</creatorcontrib><creatorcontrib>Vinatzer, Boris A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Phytopathology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mechan Llontop, Marco E</au><au>Sharma, Parul</au><au>Aguilera Flores, Marcela</au><au>Yang, Shu</au><au>Pollok, Jill</au><au>Tian, Long</au><au>Huang, Chenjie</au><au>Rideout, Steve</au><au>Heath, Lenwood S</au><au>Li, Song</au><au>Vinatzer, Boris A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Strain-Level Identification of Bacterial Tomato Pathogens Directly from Metagenomic Sequences</atitle><jtitle>Phytopathology</jtitle><addtitle>Phytopathology</addtitle><date>2020-04-01</date><risdate>2020</risdate><volume>110</volume><issue>4</issue><spage>768</spage><epage>779</epage><pages>768-779</pages><issn>0031-949X</issn><eissn>1943-7684</eissn><abstract>Routine strain-level identification of plant pathogens directly from symptomatic tissue could significantly improve plant disease control and prevention. Here we tested the Oxford Nanopore Technologies (ONT) MinION sequencer for metagenomic sequencing of tomato plants either artificially inoculated with a known strain of the bacterial speck pathogen pv. or collected in the field and showing bacterial spot symptoms caused by one of four species. After species-level identification via ONT's WIMP software and the third-party tools Sourmash and MetaMaps, we used Sourmash and MetaMaps with a custom database of representative genomes of bacterial tomato pathogens to attempt strain-level identification. In parallel, each metagenome was assembled and the longest contigs were used as query with the genome-based microbial identification Web service LINbase. Both the read-based and assembly-based approaches correctly identified pv. strain T1 in the artificially inoculated samples. The pathogen strain in most field samples was identified as a member of group 2. This result was confirmed by whole genome sequencing of colonies isolated from one of the samples. Although in our case metagenome-based pathogen identification at the strain level was achieved, caution still must be exercised in interpreting strain-level results because of the challenges inherent to assigning reads to specific strains and the error rate of nanopore sequencing.</abstract><cop>United States</cop><pmid>31829116</pmid><doi>10.1094/PHYTO-09-19-0351-R</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-5644-4768</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0031-949X
ispartof Phytopathology, 2020-04, Vol.110 (4), p.768-779
issn 0031-949X
1943-7684
language eng
recordid cdi_proquest_miscellaneous_2325297919
source MEDLINE; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection; American Phytopathological Society Journal Back Issues
subjects Bacteria
Lycopersicon esculentum
Metagenome
Plant Diseases
Xanthomonas
title Strain-Level Identification of Bacterial Tomato Pathogens Directly from Metagenomic Sequences
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T02%3A50%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Strain-Level%20Identification%20of%20Bacterial%20Tomato%20Pathogens%20Directly%20from%20Metagenomic%20Sequences&rft.jtitle=Phytopathology&rft.au=Mechan%20Llontop,%20Marco%20E&rft.date=2020-04-01&rft.volume=110&rft.issue=4&rft.spage=768&rft.epage=779&rft.pages=768-779&rft.issn=0031-949X&rft.eissn=1943-7684&rft_id=info:doi/10.1094/PHYTO-09-19-0351-R&rft_dat=%3Cproquest_cross%3E2325297919%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2325297919&rft_id=info:pmid/31829116&rfr_iscdi=true