Intravital Vascular Phototheranostics and Real-Time Circulation Dynamics of Micro- and Nanosized Erythrocyte-Derived Carriers
Erythrocyte-based carriers can serve as theranostic platforms for delivery of imaging and therapeutic payloads. Engineering these carriers at micro- or nanoscales makes them potentially useful for broad clinical applications ranging from vascular diseases to tumor theranostics. Longevity of these ca...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2020-01, Vol.12 (1), p.275-287 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 287 |
---|---|
container_issue | 1 |
container_start_page | 275 |
container_title | ACS applied materials & interfaces |
container_volume | 12 |
creator | Jia, Wangcun Burns, Joshua M Villantay, Betty Tang, Jack C Vankayala, Raviraj Lertsakdadet, Ben Choi, Bernard Nelson, J. Stuart Anvari, Bahman |
description | Erythrocyte-based carriers can serve as theranostic platforms for delivery of imaging and therapeutic payloads. Engineering these carriers at micro- or nanoscales makes them potentially useful for broad clinical applications ranging from vascular diseases to tumor theranostics. Longevity of these carriers in circulation is important in delivering a sufficient amount of their payloads to the target. We have investigated the circulation dynamics of micro (∼4.95 μm diameter) and nano (∼91 nm diameter) erythrocyte-derived carriers in real time using near-infrared fluorescence imaging, and evaluated the effectiveness of such carrier systems in mediating photothermolysis of cutaneous vasculature in mice. Fluorescence emission half-lives of micro- and nanosized carriers in response to a single intravenous injection were ∼49 and ∼15 min, respectively. A single injection of microsized carriers resulted in a 3-fold increase in signal-to-noise ratio that remained nearly persistent over 1 h of imaging time. Our results also suggest that a second injection of the carriers 7 days later can induce a transient inflammatory response, as manifested by the apparent leakage of the carriers into the perivascular tissue. The administration of the carriers into the mice vasculature reduced the threshold laser fluence to induce photothermolysis of blood vessels from >65 to 20 J/cm2. We discuss the importance of membrane physicochemical and mechanical characteristics in engineering erythrocyte-derived carriers and considerations for their clinical translation. |
doi_str_mv | 10.1021/acsami.9b18624 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2324914563</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2400481186</sourcerecordid><originalsourceid>FETCH-LOGICAL-a403t-1a29ab0c58d26f1f9b345739a7d6d51a43cb2d493cec195c521af9244213eecb3</originalsourceid><addsrcrecordid>eNqFkctLw0AQxhdRtD6uHiVHEVL3lZg9SlsfUB9I9Rommw3dkmTr7kaI4P_u1tbexNMMw-_7mJkPoVOChwRTcgnSQaOHoiBZSvkOGhDBeZzRhO5ue84P0KFzC4xTRnGyjw4YySgWFA_Q133rLXxoD3X0Bk52NdjoeW688XNloTXOa-kiaMvoRUEdz3SjopG2K9Br00bjvg0LBMRU0YOW1sQ_8ONKqj9VGU1s7-fWyN6reKys_gizEVirlXXHaK-C2qmTTT1CrzeT2egunj7d3o-upzFwzHxMgAoosEyykqYVqUTBeHLFBFyVaZkQ4EwWtOSCSSWJSGRCCVQi3E0JU0oW7Aidr32X1rx3yvm80U6quoZWmc7llGPMMxJ--D_KKBeEJykL6HCNhquds6rKl1Y3YPuc4HyVTr5OJ9-kEwRnG--uaFS5xX_jCMDFGgjCfGE624av_OX2DaVUm30</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2324914563</pqid></control><display><type>article</type><title>Intravital Vascular Phototheranostics and Real-Time Circulation Dynamics of Micro- and Nanosized Erythrocyte-Derived Carriers</title><source>MEDLINE</source><source>American Chemical Society Publications</source><creator>Jia, Wangcun ; Burns, Joshua M ; Villantay, Betty ; Tang, Jack C ; Vankayala, Raviraj ; Lertsakdadet, Ben ; Choi, Bernard ; Nelson, J. Stuart ; Anvari, Bahman</creator><creatorcontrib>Jia, Wangcun ; Burns, Joshua M ; Villantay, Betty ; Tang, Jack C ; Vankayala, Raviraj ; Lertsakdadet, Ben ; Choi, Bernard ; Nelson, J. Stuart ; Anvari, Bahman</creatorcontrib><description>Erythrocyte-based carriers can serve as theranostic platforms for delivery of imaging and therapeutic payloads. Engineering these carriers at micro- or nanoscales makes them potentially useful for broad clinical applications ranging from vascular diseases to tumor theranostics. Longevity of these carriers in circulation is important in delivering a sufficient amount of their payloads to the target. We have investigated the circulation dynamics of micro (∼4.95 μm diameter) and nano (∼91 nm diameter) erythrocyte-derived carriers in real time using near-infrared fluorescence imaging, and evaluated the effectiveness of such carrier systems in mediating photothermolysis of cutaneous vasculature in mice. Fluorescence emission half-lives of micro- and nanosized carriers in response to a single intravenous injection were ∼49 and ∼15 min, respectively. A single injection of microsized carriers resulted in a 3-fold increase in signal-to-noise ratio that remained nearly persistent over 1 h of imaging time. Our results also suggest that a second injection of the carriers 7 days later can induce a transient inflammatory response, as manifested by the apparent leakage of the carriers into the perivascular tissue. The administration of the carriers into the mice vasculature reduced the threshold laser fluence to induce photothermolysis of blood vessels from >65 to 20 J/cm2. We discuss the importance of membrane physicochemical and mechanical characteristics in engineering erythrocyte-derived carriers and considerations for their clinical translation.</description><identifier>ISSN: 1944-8244</identifier><identifier>ISSN: 1944-8252</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.9b18624</identifier><identifier>PMID: 31820920</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Animals ; blood vessels ; Drug Carriers - chemistry ; Drug Carriers - pharmacokinetics ; Drug Carriers - pharmacology ; engineering ; Erythrocytes - chemistry ; fluorescence ; half life ; image analysis ; inflammation ; intravenous injection ; Male ; mechanical properties ; Mice ; nanomaterials ; Nanostructures - chemistry ; neoplasms ; Neoplasms - diagnostic imaging ; Neoplasms - drug therapy ; Neoplasms - metabolism ; Optical Imaging ; precision medicine ; signal-to-noise ratio ; Skin - blood supply ; Skin - diagnostic imaging ; Theranostic Nanomedicine ; vascular diseases</subject><ispartof>ACS applied materials & interfaces, 2020-01, Vol.12 (1), p.275-287</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a403t-1a29ab0c58d26f1f9b345739a7d6d51a43cb2d493cec195c521af9244213eecb3</citedby><cites>FETCH-LOGICAL-a403t-1a29ab0c58d26f1f9b345739a7d6d51a43cb2d493cec195c521af9244213eecb3</cites><orcidid>0000-0002-0341-1732 ; 0000-0002-2511-5854</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.9b18624$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.9b18624$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31820920$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jia, Wangcun</creatorcontrib><creatorcontrib>Burns, Joshua M</creatorcontrib><creatorcontrib>Villantay, Betty</creatorcontrib><creatorcontrib>Tang, Jack C</creatorcontrib><creatorcontrib>Vankayala, Raviraj</creatorcontrib><creatorcontrib>Lertsakdadet, Ben</creatorcontrib><creatorcontrib>Choi, Bernard</creatorcontrib><creatorcontrib>Nelson, J. Stuart</creatorcontrib><creatorcontrib>Anvari, Bahman</creatorcontrib><title>Intravital Vascular Phototheranostics and Real-Time Circulation Dynamics of Micro- and Nanosized Erythrocyte-Derived Carriers</title><title>ACS applied materials & interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Erythrocyte-based carriers can serve as theranostic platforms for delivery of imaging and therapeutic payloads. Engineering these carriers at micro- or nanoscales makes them potentially useful for broad clinical applications ranging from vascular diseases to tumor theranostics. Longevity of these carriers in circulation is important in delivering a sufficient amount of their payloads to the target. We have investigated the circulation dynamics of micro (∼4.95 μm diameter) and nano (∼91 nm diameter) erythrocyte-derived carriers in real time using near-infrared fluorescence imaging, and evaluated the effectiveness of such carrier systems in mediating photothermolysis of cutaneous vasculature in mice. Fluorescence emission half-lives of micro- and nanosized carriers in response to a single intravenous injection were ∼49 and ∼15 min, respectively. A single injection of microsized carriers resulted in a 3-fold increase in signal-to-noise ratio that remained nearly persistent over 1 h of imaging time. Our results also suggest that a second injection of the carriers 7 days later can induce a transient inflammatory response, as manifested by the apparent leakage of the carriers into the perivascular tissue. The administration of the carriers into the mice vasculature reduced the threshold laser fluence to induce photothermolysis of blood vessels from >65 to 20 J/cm2. We discuss the importance of membrane physicochemical and mechanical characteristics in engineering erythrocyte-derived carriers and considerations for their clinical translation.</description><subject>Animals</subject><subject>blood vessels</subject><subject>Drug Carriers - chemistry</subject><subject>Drug Carriers - pharmacokinetics</subject><subject>Drug Carriers - pharmacology</subject><subject>engineering</subject><subject>Erythrocytes - chemistry</subject><subject>fluorescence</subject><subject>half life</subject><subject>image analysis</subject><subject>inflammation</subject><subject>intravenous injection</subject><subject>Male</subject><subject>mechanical properties</subject><subject>Mice</subject><subject>nanomaterials</subject><subject>Nanostructures - chemistry</subject><subject>neoplasms</subject><subject>Neoplasms - diagnostic imaging</subject><subject>Neoplasms - drug therapy</subject><subject>Neoplasms - metabolism</subject><subject>Optical Imaging</subject><subject>precision medicine</subject><subject>signal-to-noise ratio</subject><subject>Skin - blood supply</subject><subject>Skin - diagnostic imaging</subject><subject>Theranostic Nanomedicine</subject><subject>vascular diseases</subject><issn>1944-8244</issn><issn>1944-8252</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkctLw0AQxhdRtD6uHiVHEVL3lZg9SlsfUB9I9Rommw3dkmTr7kaI4P_u1tbexNMMw-_7mJkPoVOChwRTcgnSQaOHoiBZSvkOGhDBeZzRhO5ue84P0KFzC4xTRnGyjw4YySgWFA_Q133rLXxoD3X0Bk52NdjoeW688XNloTXOa-kiaMvoRUEdz3SjopG2K9Br00bjvg0LBMRU0YOW1sQ_8ONKqj9VGU1s7-fWyN6reKys_gizEVirlXXHaK-C2qmTTT1CrzeT2egunj7d3o-upzFwzHxMgAoosEyykqYVqUTBeHLFBFyVaZkQ4EwWtOSCSSWJSGRCCVQi3E0JU0oW7Aidr32X1rx3yvm80U6quoZWmc7llGPMMxJ--D_KKBeEJykL6HCNhquds6rKl1Y3YPuc4HyVTr5OJ9-kEwRnG--uaFS5xX_jCMDFGgjCfGE624av_OX2DaVUm30</recordid><startdate>20200108</startdate><enddate>20200108</enddate><creator>Jia, Wangcun</creator><creator>Burns, Joshua M</creator><creator>Villantay, Betty</creator><creator>Tang, Jack C</creator><creator>Vankayala, Raviraj</creator><creator>Lertsakdadet, Ben</creator><creator>Choi, Bernard</creator><creator>Nelson, J. Stuart</creator><creator>Anvari, Bahman</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0002-0341-1732</orcidid><orcidid>https://orcid.org/0000-0002-2511-5854</orcidid></search><sort><creationdate>20200108</creationdate><title>Intravital Vascular Phototheranostics and Real-Time Circulation Dynamics of Micro- and Nanosized Erythrocyte-Derived Carriers</title><author>Jia, Wangcun ; Burns, Joshua M ; Villantay, Betty ; Tang, Jack C ; Vankayala, Raviraj ; Lertsakdadet, Ben ; Choi, Bernard ; Nelson, J. Stuart ; Anvari, Bahman</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a403t-1a29ab0c58d26f1f9b345739a7d6d51a43cb2d493cec195c521af9244213eecb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animals</topic><topic>blood vessels</topic><topic>Drug Carriers - chemistry</topic><topic>Drug Carriers - pharmacokinetics</topic><topic>Drug Carriers - pharmacology</topic><topic>engineering</topic><topic>Erythrocytes - chemistry</topic><topic>fluorescence</topic><topic>half life</topic><topic>image analysis</topic><topic>inflammation</topic><topic>intravenous injection</topic><topic>Male</topic><topic>mechanical properties</topic><topic>Mice</topic><topic>nanomaterials</topic><topic>Nanostructures - chemistry</topic><topic>neoplasms</topic><topic>Neoplasms - diagnostic imaging</topic><topic>Neoplasms - drug therapy</topic><topic>Neoplasms - metabolism</topic><topic>Optical Imaging</topic><topic>precision medicine</topic><topic>signal-to-noise ratio</topic><topic>Skin - blood supply</topic><topic>Skin - diagnostic imaging</topic><topic>Theranostic Nanomedicine</topic><topic>vascular diseases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jia, Wangcun</creatorcontrib><creatorcontrib>Burns, Joshua M</creatorcontrib><creatorcontrib>Villantay, Betty</creatorcontrib><creatorcontrib>Tang, Jack C</creatorcontrib><creatorcontrib>Vankayala, Raviraj</creatorcontrib><creatorcontrib>Lertsakdadet, Ben</creatorcontrib><creatorcontrib>Choi, Bernard</creatorcontrib><creatorcontrib>Nelson, J. Stuart</creatorcontrib><creatorcontrib>Anvari, Bahman</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>ACS applied materials & interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jia, Wangcun</au><au>Burns, Joshua M</au><au>Villantay, Betty</au><au>Tang, Jack C</au><au>Vankayala, Raviraj</au><au>Lertsakdadet, Ben</au><au>Choi, Bernard</au><au>Nelson, J. Stuart</au><au>Anvari, Bahman</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intravital Vascular Phototheranostics and Real-Time Circulation Dynamics of Micro- and Nanosized Erythrocyte-Derived Carriers</atitle><jtitle>ACS applied materials & interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2020-01-08</date><risdate>2020</risdate><volume>12</volume><issue>1</issue><spage>275</spage><epage>287</epage><pages>275-287</pages><issn>1944-8244</issn><issn>1944-8252</issn><eissn>1944-8252</eissn><abstract>Erythrocyte-based carriers can serve as theranostic platforms for delivery of imaging and therapeutic payloads. Engineering these carriers at micro- or nanoscales makes them potentially useful for broad clinical applications ranging from vascular diseases to tumor theranostics. Longevity of these carriers in circulation is important in delivering a sufficient amount of their payloads to the target. We have investigated the circulation dynamics of micro (∼4.95 μm diameter) and nano (∼91 nm diameter) erythrocyte-derived carriers in real time using near-infrared fluorescence imaging, and evaluated the effectiveness of such carrier systems in mediating photothermolysis of cutaneous vasculature in mice. Fluorescence emission half-lives of micro- and nanosized carriers in response to a single intravenous injection were ∼49 and ∼15 min, respectively. A single injection of microsized carriers resulted in a 3-fold increase in signal-to-noise ratio that remained nearly persistent over 1 h of imaging time. Our results also suggest that a second injection of the carriers 7 days later can induce a transient inflammatory response, as manifested by the apparent leakage of the carriers into the perivascular tissue. The administration of the carriers into the mice vasculature reduced the threshold laser fluence to induce photothermolysis of blood vessels from >65 to 20 J/cm2. We discuss the importance of membrane physicochemical and mechanical characteristics in engineering erythrocyte-derived carriers and considerations for their clinical translation.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>31820920</pmid><doi>10.1021/acsami.9b18624</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-0341-1732</orcidid><orcidid>https://orcid.org/0000-0002-2511-5854</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1944-8244 |
ispartof | ACS applied materials & interfaces, 2020-01, Vol.12 (1), p.275-287 |
issn | 1944-8244 1944-8252 1944-8252 |
language | eng |
recordid | cdi_proquest_miscellaneous_2324914563 |
source | MEDLINE; American Chemical Society Publications |
subjects | Animals blood vessels Drug Carriers - chemistry Drug Carriers - pharmacokinetics Drug Carriers - pharmacology engineering Erythrocytes - chemistry fluorescence half life image analysis inflammation intravenous injection Male mechanical properties Mice nanomaterials Nanostructures - chemistry neoplasms Neoplasms - diagnostic imaging Neoplasms - drug therapy Neoplasms - metabolism Optical Imaging precision medicine signal-to-noise ratio Skin - blood supply Skin - diagnostic imaging Theranostic Nanomedicine vascular diseases |
title | Intravital Vascular Phototheranostics and Real-Time Circulation Dynamics of Micro- and Nanosized Erythrocyte-Derived Carriers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T17%3A07%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intravital%20Vascular%20Phototheranostics%20and%20Real-Time%20Circulation%20Dynamics%20of%20Micro-%20and%20Nanosized%20Erythrocyte-Derived%20Carriers&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Jia,%20Wangcun&rft.date=2020-01-08&rft.volume=12&rft.issue=1&rft.spage=275&rft.epage=287&rft.pages=275-287&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.9b18624&rft_dat=%3Cproquest_cross%3E2400481186%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2324914563&rft_id=info:pmid/31820920&rfr_iscdi=true |