Intravital Vascular Phototheranostics and Real-Time Circulation Dynamics of Micro- and Nanosized Erythrocyte-Derived Carriers

Erythrocyte-based carriers can serve as theranostic platforms for delivery of imaging and therapeutic payloads. Engineering these carriers at micro- or nanoscales makes them potentially useful for broad clinical applications ranging from vascular diseases to tumor theranostics. Longevity of these ca...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2020-01, Vol.12 (1), p.275-287
Hauptverfasser: Jia, Wangcun, Burns, Joshua M, Villantay, Betty, Tang, Jack C, Vankayala, Raviraj, Lertsakdadet, Ben, Choi, Bernard, Nelson, J. Stuart, Anvari, Bahman
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 287
container_issue 1
container_start_page 275
container_title ACS applied materials & interfaces
container_volume 12
creator Jia, Wangcun
Burns, Joshua M
Villantay, Betty
Tang, Jack C
Vankayala, Raviraj
Lertsakdadet, Ben
Choi, Bernard
Nelson, J. Stuart
Anvari, Bahman
description Erythrocyte-based carriers can serve as theranostic platforms for delivery of imaging and therapeutic payloads. Engineering these carriers at micro- or nanoscales makes them potentially useful for broad clinical applications ranging from vascular diseases to tumor theranostics. Longevity of these carriers in circulation is important in delivering a sufficient amount of their payloads to the target. We have investigated the circulation dynamics of micro (∼4.95 μm diameter) and nano (∼91 nm diameter) erythrocyte-derived carriers in real time using near-infrared fluorescence imaging, and evaluated the effectiveness of such carrier systems in mediating photothermolysis of cutaneous vasculature in mice. Fluorescence emission half-lives of micro- and nanosized carriers in response to a single intravenous injection were ∼49 and ∼15 min, respectively. A single injection of microsized carriers resulted in a 3-fold increase in signal-to-noise ratio that remained nearly persistent over 1 h of imaging time. Our results also suggest that a second injection of the carriers 7 days later can induce a transient inflammatory response, as manifested by the apparent leakage of the carriers into the perivascular tissue. The administration of the carriers into the mice vasculature reduced the threshold laser fluence to induce photothermolysis of blood vessels from >65 to 20 J/cm2. We discuss the importance of membrane physicochemical and mechanical characteristics in engineering erythrocyte-derived carriers and considerations for their clinical translation.
doi_str_mv 10.1021/acsami.9b18624
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2324914563</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2400481186</sourcerecordid><originalsourceid>FETCH-LOGICAL-a403t-1a29ab0c58d26f1f9b345739a7d6d51a43cb2d493cec195c521af9244213eecb3</originalsourceid><addsrcrecordid>eNqFkctLw0AQxhdRtD6uHiVHEVL3lZg9SlsfUB9I9Rommw3dkmTr7kaI4P_u1tbexNMMw-_7mJkPoVOChwRTcgnSQaOHoiBZSvkOGhDBeZzRhO5ue84P0KFzC4xTRnGyjw4YySgWFA_Q133rLXxoD3X0Bk52NdjoeW688XNloTXOa-kiaMvoRUEdz3SjopG2K9Br00bjvg0LBMRU0YOW1sQ_8ONKqj9VGU1s7-fWyN6reKys_gizEVirlXXHaK-C2qmTTT1CrzeT2egunj7d3o-upzFwzHxMgAoosEyykqYVqUTBeHLFBFyVaZkQ4EwWtOSCSSWJSGRCCVQi3E0JU0oW7Aidr32X1rx3yvm80U6quoZWmc7llGPMMxJ--D_KKBeEJykL6HCNhquds6rKl1Y3YPuc4HyVTr5OJ9-kEwRnG--uaFS5xX_jCMDFGgjCfGE624av_OX2DaVUm30</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2324914563</pqid></control><display><type>article</type><title>Intravital Vascular Phototheranostics and Real-Time Circulation Dynamics of Micro- and Nanosized Erythrocyte-Derived Carriers</title><source>MEDLINE</source><source>American Chemical Society Publications</source><creator>Jia, Wangcun ; Burns, Joshua M ; Villantay, Betty ; Tang, Jack C ; Vankayala, Raviraj ; Lertsakdadet, Ben ; Choi, Bernard ; Nelson, J. Stuart ; Anvari, Bahman</creator><creatorcontrib>Jia, Wangcun ; Burns, Joshua M ; Villantay, Betty ; Tang, Jack C ; Vankayala, Raviraj ; Lertsakdadet, Ben ; Choi, Bernard ; Nelson, J. Stuart ; Anvari, Bahman</creatorcontrib><description>Erythrocyte-based carriers can serve as theranostic platforms for delivery of imaging and therapeutic payloads. Engineering these carriers at micro- or nanoscales makes them potentially useful for broad clinical applications ranging from vascular diseases to tumor theranostics. Longevity of these carriers in circulation is important in delivering a sufficient amount of their payloads to the target. We have investigated the circulation dynamics of micro (∼4.95 μm diameter) and nano (∼91 nm diameter) erythrocyte-derived carriers in real time using near-infrared fluorescence imaging, and evaluated the effectiveness of such carrier systems in mediating photothermolysis of cutaneous vasculature in mice. Fluorescence emission half-lives of micro- and nanosized carriers in response to a single intravenous injection were ∼49 and ∼15 min, respectively. A single injection of microsized carriers resulted in a 3-fold increase in signal-to-noise ratio that remained nearly persistent over 1 h of imaging time. Our results also suggest that a second injection of the carriers 7 days later can induce a transient inflammatory response, as manifested by the apparent leakage of the carriers into the perivascular tissue. The administration of the carriers into the mice vasculature reduced the threshold laser fluence to induce photothermolysis of blood vessels from &gt;65 to 20 J/cm2. We discuss the importance of membrane physicochemical and mechanical characteristics in engineering erythrocyte-derived carriers and considerations for their clinical translation.</description><identifier>ISSN: 1944-8244</identifier><identifier>ISSN: 1944-8252</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.9b18624</identifier><identifier>PMID: 31820920</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Animals ; blood vessels ; Drug Carriers - chemistry ; Drug Carriers - pharmacokinetics ; Drug Carriers - pharmacology ; engineering ; Erythrocytes - chemistry ; fluorescence ; half life ; image analysis ; inflammation ; intravenous injection ; Male ; mechanical properties ; Mice ; nanomaterials ; Nanostructures - chemistry ; neoplasms ; Neoplasms - diagnostic imaging ; Neoplasms - drug therapy ; Neoplasms - metabolism ; Optical Imaging ; precision medicine ; signal-to-noise ratio ; Skin - blood supply ; Skin - diagnostic imaging ; Theranostic Nanomedicine ; vascular diseases</subject><ispartof>ACS applied materials &amp; interfaces, 2020-01, Vol.12 (1), p.275-287</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a403t-1a29ab0c58d26f1f9b345739a7d6d51a43cb2d493cec195c521af9244213eecb3</citedby><cites>FETCH-LOGICAL-a403t-1a29ab0c58d26f1f9b345739a7d6d51a43cb2d493cec195c521af9244213eecb3</cites><orcidid>0000-0002-0341-1732 ; 0000-0002-2511-5854</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.9b18624$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.9b18624$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31820920$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jia, Wangcun</creatorcontrib><creatorcontrib>Burns, Joshua M</creatorcontrib><creatorcontrib>Villantay, Betty</creatorcontrib><creatorcontrib>Tang, Jack C</creatorcontrib><creatorcontrib>Vankayala, Raviraj</creatorcontrib><creatorcontrib>Lertsakdadet, Ben</creatorcontrib><creatorcontrib>Choi, Bernard</creatorcontrib><creatorcontrib>Nelson, J. Stuart</creatorcontrib><creatorcontrib>Anvari, Bahman</creatorcontrib><title>Intravital Vascular Phototheranostics and Real-Time Circulation Dynamics of Micro- and Nanosized Erythrocyte-Derived Carriers</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Erythrocyte-based carriers can serve as theranostic platforms for delivery of imaging and therapeutic payloads. Engineering these carriers at micro- or nanoscales makes them potentially useful for broad clinical applications ranging from vascular diseases to tumor theranostics. Longevity of these carriers in circulation is important in delivering a sufficient amount of their payloads to the target. We have investigated the circulation dynamics of micro (∼4.95 μm diameter) and nano (∼91 nm diameter) erythrocyte-derived carriers in real time using near-infrared fluorescence imaging, and evaluated the effectiveness of such carrier systems in mediating photothermolysis of cutaneous vasculature in mice. Fluorescence emission half-lives of micro- and nanosized carriers in response to a single intravenous injection were ∼49 and ∼15 min, respectively. A single injection of microsized carriers resulted in a 3-fold increase in signal-to-noise ratio that remained nearly persistent over 1 h of imaging time. Our results also suggest that a second injection of the carriers 7 days later can induce a transient inflammatory response, as manifested by the apparent leakage of the carriers into the perivascular tissue. The administration of the carriers into the mice vasculature reduced the threshold laser fluence to induce photothermolysis of blood vessels from &gt;65 to 20 J/cm2. We discuss the importance of membrane physicochemical and mechanical characteristics in engineering erythrocyte-derived carriers and considerations for their clinical translation.</description><subject>Animals</subject><subject>blood vessels</subject><subject>Drug Carriers - chemistry</subject><subject>Drug Carriers - pharmacokinetics</subject><subject>Drug Carriers - pharmacology</subject><subject>engineering</subject><subject>Erythrocytes - chemistry</subject><subject>fluorescence</subject><subject>half life</subject><subject>image analysis</subject><subject>inflammation</subject><subject>intravenous injection</subject><subject>Male</subject><subject>mechanical properties</subject><subject>Mice</subject><subject>nanomaterials</subject><subject>Nanostructures - chemistry</subject><subject>neoplasms</subject><subject>Neoplasms - diagnostic imaging</subject><subject>Neoplasms - drug therapy</subject><subject>Neoplasms - metabolism</subject><subject>Optical Imaging</subject><subject>precision medicine</subject><subject>signal-to-noise ratio</subject><subject>Skin - blood supply</subject><subject>Skin - diagnostic imaging</subject><subject>Theranostic Nanomedicine</subject><subject>vascular diseases</subject><issn>1944-8244</issn><issn>1944-8252</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkctLw0AQxhdRtD6uHiVHEVL3lZg9SlsfUB9I9Rommw3dkmTr7kaI4P_u1tbexNMMw-_7mJkPoVOChwRTcgnSQaOHoiBZSvkOGhDBeZzRhO5ue84P0KFzC4xTRnGyjw4YySgWFA_Q133rLXxoD3X0Bk52NdjoeW688XNloTXOa-kiaMvoRUEdz3SjopG2K9Br00bjvg0LBMRU0YOW1sQ_8ONKqj9VGU1s7-fWyN6reKys_gizEVirlXXHaK-C2qmTTT1CrzeT2egunj7d3o-upzFwzHxMgAoosEyykqYVqUTBeHLFBFyVaZkQ4EwWtOSCSSWJSGRCCVQi3E0JU0oW7Aidr32X1rx3yvm80U6quoZWmc7llGPMMxJ--D_KKBeEJykL6HCNhquds6rKl1Y3YPuc4HyVTr5OJ9-kEwRnG--uaFS5xX_jCMDFGgjCfGE624av_OX2DaVUm30</recordid><startdate>20200108</startdate><enddate>20200108</enddate><creator>Jia, Wangcun</creator><creator>Burns, Joshua M</creator><creator>Villantay, Betty</creator><creator>Tang, Jack C</creator><creator>Vankayala, Raviraj</creator><creator>Lertsakdadet, Ben</creator><creator>Choi, Bernard</creator><creator>Nelson, J. Stuart</creator><creator>Anvari, Bahman</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0002-0341-1732</orcidid><orcidid>https://orcid.org/0000-0002-2511-5854</orcidid></search><sort><creationdate>20200108</creationdate><title>Intravital Vascular Phototheranostics and Real-Time Circulation Dynamics of Micro- and Nanosized Erythrocyte-Derived Carriers</title><author>Jia, Wangcun ; Burns, Joshua M ; Villantay, Betty ; Tang, Jack C ; Vankayala, Raviraj ; Lertsakdadet, Ben ; Choi, Bernard ; Nelson, J. Stuart ; Anvari, Bahman</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a403t-1a29ab0c58d26f1f9b345739a7d6d51a43cb2d493cec195c521af9244213eecb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animals</topic><topic>blood vessels</topic><topic>Drug Carriers - chemistry</topic><topic>Drug Carriers - pharmacokinetics</topic><topic>Drug Carriers - pharmacology</topic><topic>engineering</topic><topic>Erythrocytes - chemistry</topic><topic>fluorescence</topic><topic>half life</topic><topic>image analysis</topic><topic>inflammation</topic><topic>intravenous injection</topic><topic>Male</topic><topic>mechanical properties</topic><topic>Mice</topic><topic>nanomaterials</topic><topic>Nanostructures - chemistry</topic><topic>neoplasms</topic><topic>Neoplasms - diagnostic imaging</topic><topic>Neoplasms - drug therapy</topic><topic>Neoplasms - metabolism</topic><topic>Optical Imaging</topic><topic>precision medicine</topic><topic>signal-to-noise ratio</topic><topic>Skin - blood supply</topic><topic>Skin - diagnostic imaging</topic><topic>Theranostic Nanomedicine</topic><topic>vascular diseases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jia, Wangcun</creatorcontrib><creatorcontrib>Burns, Joshua M</creatorcontrib><creatorcontrib>Villantay, Betty</creatorcontrib><creatorcontrib>Tang, Jack C</creatorcontrib><creatorcontrib>Vankayala, Raviraj</creatorcontrib><creatorcontrib>Lertsakdadet, Ben</creatorcontrib><creatorcontrib>Choi, Bernard</creatorcontrib><creatorcontrib>Nelson, J. Stuart</creatorcontrib><creatorcontrib>Anvari, Bahman</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jia, Wangcun</au><au>Burns, Joshua M</au><au>Villantay, Betty</au><au>Tang, Jack C</au><au>Vankayala, Raviraj</au><au>Lertsakdadet, Ben</au><au>Choi, Bernard</au><au>Nelson, J. Stuart</au><au>Anvari, Bahman</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intravital Vascular Phototheranostics and Real-Time Circulation Dynamics of Micro- and Nanosized Erythrocyte-Derived Carriers</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2020-01-08</date><risdate>2020</risdate><volume>12</volume><issue>1</issue><spage>275</spage><epage>287</epage><pages>275-287</pages><issn>1944-8244</issn><issn>1944-8252</issn><eissn>1944-8252</eissn><abstract>Erythrocyte-based carriers can serve as theranostic platforms for delivery of imaging and therapeutic payloads. Engineering these carriers at micro- or nanoscales makes them potentially useful for broad clinical applications ranging from vascular diseases to tumor theranostics. Longevity of these carriers in circulation is important in delivering a sufficient amount of their payloads to the target. We have investigated the circulation dynamics of micro (∼4.95 μm diameter) and nano (∼91 nm diameter) erythrocyte-derived carriers in real time using near-infrared fluorescence imaging, and evaluated the effectiveness of such carrier systems in mediating photothermolysis of cutaneous vasculature in mice. Fluorescence emission half-lives of micro- and nanosized carriers in response to a single intravenous injection were ∼49 and ∼15 min, respectively. A single injection of microsized carriers resulted in a 3-fold increase in signal-to-noise ratio that remained nearly persistent over 1 h of imaging time. Our results also suggest that a second injection of the carriers 7 days later can induce a transient inflammatory response, as manifested by the apparent leakage of the carriers into the perivascular tissue. The administration of the carriers into the mice vasculature reduced the threshold laser fluence to induce photothermolysis of blood vessels from &gt;65 to 20 J/cm2. We discuss the importance of membrane physicochemical and mechanical characteristics in engineering erythrocyte-derived carriers and considerations for their clinical translation.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>31820920</pmid><doi>10.1021/acsami.9b18624</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-0341-1732</orcidid><orcidid>https://orcid.org/0000-0002-2511-5854</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2020-01, Vol.12 (1), p.275-287
issn 1944-8244
1944-8252
1944-8252
language eng
recordid cdi_proquest_miscellaneous_2324914563
source MEDLINE; American Chemical Society Publications
subjects Animals
blood vessels
Drug Carriers - chemistry
Drug Carriers - pharmacokinetics
Drug Carriers - pharmacology
engineering
Erythrocytes - chemistry
fluorescence
half life
image analysis
inflammation
intravenous injection
Male
mechanical properties
Mice
nanomaterials
Nanostructures - chemistry
neoplasms
Neoplasms - diagnostic imaging
Neoplasms - drug therapy
Neoplasms - metabolism
Optical Imaging
precision medicine
signal-to-noise ratio
Skin - blood supply
Skin - diagnostic imaging
Theranostic Nanomedicine
vascular diseases
title Intravital Vascular Phototheranostics and Real-Time Circulation Dynamics of Micro- and Nanosized Erythrocyte-Derived Carriers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T17%3A07%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intravital%20Vascular%20Phototheranostics%20and%20Real-Time%20Circulation%20Dynamics%20of%20Micro-%20and%20Nanosized%20Erythrocyte-Derived%20Carriers&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Jia,%20Wangcun&rft.date=2020-01-08&rft.volume=12&rft.issue=1&rft.spage=275&rft.epage=287&rft.pages=275-287&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.9b18624&rft_dat=%3Cproquest_cross%3E2400481186%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2324914563&rft_id=info:pmid/31820920&rfr_iscdi=true