Evolutionary dynamics of natural product biosynthesis in bacteria

Covering: 2008 up to 2019 The forces of biochemical adaptive evolution operate at the level of genes, manifesting in complex phenotypes and the global biodiversity of proteins and metabolites. While evolutionary histories have been deciphered for some other complex traits, the origins of natural pro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Natural product reports 2020-04, Vol.37 (4), p.566-599
Hauptverfasser: Chevrette, Marc G, Gutiérrez-García, Karina, Selem-Mojica, Nelly, Aguilar-Martínez, César, Yañez-Olvera, Alan, Ramos-Aboites, Hilda E, Hoskisson, Paul A, Barona-Gómez, Francisco
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 599
container_issue 4
container_start_page 566
container_title Natural product reports
container_volume 37
creator Chevrette, Marc G
Gutiérrez-García, Karina
Selem-Mojica, Nelly
Aguilar-Martínez, César
Yañez-Olvera, Alan
Ramos-Aboites, Hilda E
Hoskisson, Paul A
Barona-Gómez, Francisco
description Covering: 2008 up to 2019 The forces of biochemical adaptive evolution operate at the level of genes, manifesting in complex phenotypes and the global biodiversity of proteins and metabolites. While evolutionary histories have been deciphered for some other complex traits, the origins of natural product biosynthesis largely remain a mystery. This fundamental knowledge gap is surprising given the many decades of research probing the genetic, chemical, and biophysical mechanisms of bacterial natural product biosynthesis. Recently, evolutionary thinking has begun to permeate this otherwise mechanistically dominated field. Natural products are now sometimes referred to as 'specialized' rather than 'secondary' metabolites, reinforcing the importance of their biological and ecological functions. Here, we review known evolutionary mechanisms underlying the overwhelming chemical diversity of bacterial secondary metabolism, focusing on enzyme promiscuity and the evolution of enzymatic domains that enable metabolic traits. We discuss the mechanisms that drive the assembly of natural product biosynthetic gene clusters and propose formal definitions for 'specialized' and 'secondary' metabolism. We further explore how biosynthetic gene clusters evolve to synthesize related molecular species, and in turn how the biological and ecological roles that emerge from metabolic diversity are acted on by selection. Finally, we reconcile chemical, functional, and genetic data into an evolutionary model, the dynamic chemical matrix evolutionary hypothesis, in which the relationships between chemical distance, biomolecular activity, and relative fitness shape adaptive landscapes. We review known evolutionary mechanisms underlying the overwhelming chemical diversity of bacterial natural products biosynthesis, focusing on enzyme promiscuity and the evolution of enzymatic domains that enable metabolic traits.
doi_str_mv 10.1039/c9np00048h
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2324909249</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2324909249</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-a38f3b9c3c0c95c8be07ae182c5ea93299ada98b42f7e477102657e90f2ce42a3</originalsourceid><addsrcrecordid>eNp9kcFLwzAUh4Mobk4v3pWKFxGqL0nbNMcxphOGetBzSdOUZbTJTFph_72ZmxM8eHnv8Pt4_PgeQucY7jBQfi-5WQFAki8O0BAnGcQJS8khGgLJ0hjSLB-gE--XABizLDtGA4pzQnLGhmg8_bRN32lrhFtH1dqIVksf2ToyouudaKKVs1Uvu6jU1q9Nt1Be-0ibqBSyU06LU3RUi8ars90eofeH6dtkFs9fHp8m43ksEwZdLGhe05JLKkHyVOalAiZU6CFTJTglnItK8LxMSM1UwhjelGeKQ02kSoigI3SzvRsKffTKd0WrvVRNI4yyvS8IJQkHHkZAr_-gS9s7E9oFiqcZJzjDgbrdUtJZ752qi5XTbdBQYCg2YosJf379FjsL8OXuZF-2qtqjPyYDcLEFnJf79PczIb_6Ly9WVU2_AIdGiDI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2395692161</pqid></control><display><type>article</type><title>Evolutionary dynamics of natural product biosynthesis in bacteria</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Chevrette, Marc G ; Gutiérrez-García, Karina ; Selem-Mojica, Nelly ; Aguilar-Martínez, César ; Yañez-Olvera, Alan ; Ramos-Aboites, Hilda E ; Hoskisson, Paul A ; Barona-Gómez, Francisco</creator><creatorcontrib>Chevrette, Marc G ; Gutiérrez-García, Karina ; Selem-Mojica, Nelly ; Aguilar-Martínez, César ; Yañez-Olvera, Alan ; Ramos-Aboites, Hilda E ; Hoskisson, Paul A ; Barona-Gómez, Francisco</creatorcontrib><description>Covering: 2008 up to 2019 The forces of biochemical adaptive evolution operate at the level of genes, manifesting in complex phenotypes and the global biodiversity of proteins and metabolites. While evolutionary histories have been deciphered for some other complex traits, the origins of natural product biosynthesis largely remain a mystery. This fundamental knowledge gap is surprising given the many decades of research probing the genetic, chemical, and biophysical mechanisms of bacterial natural product biosynthesis. Recently, evolutionary thinking has begun to permeate this otherwise mechanistically dominated field. Natural products are now sometimes referred to as 'specialized' rather than 'secondary' metabolites, reinforcing the importance of their biological and ecological functions. Here, we review known evolutionary mechanisms underlying the overwhelming chemical diversity of bacterial secondary metabolism, focusing on enzyme promiscuity and the evolution of enzymatic domains that enable metabolic traits. We discuss the mechanisms that drive the assembly of natural product biosynthetic gene clusters and propose formal definitions for 'specialized' and 'secondary' metabolism. We further explore how biosynthetic gene clusters evolve to synthesize related molecular species, and in turn how the biological and ecological roles that emerge from metabolic diversity are acted on by selection. Finally, we reconcile chemical, functional, and genetic data into an evolutionary model, the dynamic chemical matrix evolutionary hypothesis, in which the relationships between chemical distance, biomolecular activity, and relative fitness shape adaptive landscapes. We review known evolutionary mechanisms underlying the overwhelming chemical diversity of bacterial natural products biosynthesis, focusing on enzyme promiscuity and the evolution of enzymatic domains that enable metabolic traits.</description><identifier>ISSN: 0265-0568</identifier><identifier>EISSN: 1460-4752</identifier><identifier>DOI: 10.1039/c9np00048h</identifier><identifier>PMID: 31822877</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Bacteria ; Biodiversity ; Biological evolution ; Biosynthesis ; Chemical activity ; Chemical synthesis ; Ecological function ; Evolution &amp; development ; Evolutionary genetics ; Gene clusters ; Metabolism ; Metabolites ; Natural products ; Phenotypes</subject><ispartof>Natural product reports, 2020-04, Vol.37 (4), p.566-599</ispartof><rights>Copyright Royal Society of Chemistry 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-a38f3b9c3c0c95c8be07ae182c5ea93299ada98b42f7e477102657e90f2ce42a3</citedby><cites>FETCH-LOGICAL-c470t-a38f3b9c3c0c95c8be07ae182c5ea93299ada98b42f7e477102657e90f2ce42a3</cites><orcidid>0000-0002-7209-0717 ; 0000-0003-4332-1640 ; 0000-0003-1492-9497 ; 0000-0003-1697-3862</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27915,27916</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31822877$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chevrette, Marc G</creatorcontrib><creatorcontrib>Gutiérrez-García, Karina</creatorcontrib><creatorcontrib>Selem-Mojica, Nelly</creatorcontrib><creatorcontrib>Aguilar-Martínez, César</creatorcontrib><creatorcontrib>Yañez-Olvera, Alan</creatorcontrib><creatorcontrib>Ramos-Aboites, Hilda E</creatorcontrib><creatorcontrib>Hoskisson, Paul A</creatorcontrib><creatorcontrib>Barona-Gómez, Francisco</creatorcontrib><title>Evolutionary dynamics of natural product biosynthesis in bacteria</title><title>Natural product reports</title><addtitle>Nat Prod Rep</addtitle><description>Covering: 2008 up to 2019 The forces of biochemical adaptive evolution operate at the level of genes, manifesting in complex phenotypes and the global biodiversity of proteins and metabolites. While evolutionary histories have been deciphered for some other complex traits, the origins of natural product biosynthesis largely remain a mystery. This fundamental knowledge gap is surprising given the many decades of research probing the genetic, chemical, and biophysical mechanisms of bacterial natural product biosynthesis. Recently, evolutionary thinking has begun to permeate this otherwise mechanistically dominated field. Natural products are now sometimes referred to as 'specialized' rather than 'secondary' metabolites, reinforcing the importance of their biological and ecological functions. Here, we review known evolutionary mechanisms underlying the overwhelming chemical diversity of bacterial secondary metabolism, focusing on enzyme promiscuity and the evolution of enzymatic domains that enable metabolic traits. We discuss the mechanisms that drive the assembly of natural product biosynthetic gene clusters and propose formal definitions for 'specialized' and 'secondary' metabolism. We further explore how biosynthetic gene clusters evolve to synthesize related molecular species, and in turn how the biological and ecological roles that emerge from metabolic diversity are acted on by selection. Finally, we reconcile chemical, functional, and genetic data into an evolutionary model, the dynamic chemical matrix evolutionary hypothesis, in which the relationships between chemical distance, biomolecular activity, and relative fitness shape adaptive landscapes. We review known evolutionary mechanisms underlying the overwhelming chemical diversity of bacterial natural products biosynthesis, focusing on enzyme promiscuity and the evolution of enzymatic domains that enable metabolic traits.</description><subject>Bacteria</subject><subject>Biodiversity</subject><subject>Biological evolution</subject><subject>Biosynthesis</subject><subject>Chemical activity</subject><subject>Chemical synthesis</subject><subject>Ecological function</subject><subject>Evolution &amp; development</subject><subject>Evolutionary genetics</subject><subject>Gene clusters</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>Natural products</subject><subject>Phenotypes</subject><issn>0265-0568</issn><issn>1460-4752</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kcFLwzAUh4Mobk4v3pWKFxGqL0nbNMcxphOGetBzSdOUZbTJTFph_72ZmxM8eHnv8Pt4_PgeQucY7jBQfi-5WQFAki8O0BAnGcQJS8khGgLJ0hjSLB-gE--XABizLDtGA4pzQnLGhmg8_bRN32lrhFtH1dqIVksf2ToyouudaKKVs1Uvu6jU1q9Nt1Be-0ibqBSyU06LU3RUi8ars90eofeH6dtkFs9fHp8m43ksEwZdLGhe05JLKkHyVOalAiZU6CFTJTglnItK8LxMSM1UwhjelGeKQ02kSoigI3SzvRsKffTKd0WrvVRNI4yyvS8IJQkHHkZAr_-gS9s7E9oFiqcZJzjDgbrdUtJZ752qi5XTbdBQYCg2YosJf379FjsL8OXuZF-2qtqjPyYDcLEFnJf79PczIb_6Ly9WVU2_AIdGiDI</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Chevrette, Marc G</creator><creator>Gutiérrez-García, Karina</creator><creator>Selem-Mojica, Nelly</creator><creator>Aguilar-Martínez, César</creator><creator>Yañez-Olvera, Alan</creator><creator>Ramos-Aboites, Hilda E</creator><creator>Hoskisson, Paul A</creator><creator>Barona-Gómez, Francisco</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7T7</scope><scope>7TM</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7209-0717</orcidid><orcidid>https://orcid.org/0000-0003-4332-1640</orcidid><orcidid>https://orcid.org/0000-0003-1492-9497</orcidid><orcidid>https://orcid.org/0000-0003-1697-3862</orcidid></search><sort><creationdate>20200401</creationdate><title>Evolutionary dynamics of natural product biosynthesis in bacteria</title><author>Chevrette, Marc G ; Gutiérrez-García, Karina ; Selem-Mojica, Nelly ; Aguilar-Martínez, César ; Yañez-Olvera, Alan ; Ramos-Aboites, Hilda E ; Hoskisson, Paul A ; Barona-Gómez, Francisco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-a38f3b9c3c0c95c8be07ae182c5ea93299ada98b42f7e477102657e90f2ce42a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Bacteria</topic><topic>Biodiversity</topic><topic>Biological evolution</topic><topic>Biosynthesis</topic><topic>Chemical activity</topic><topic>Chemical synthesis</topic><topic>Ecological function</topic><topic>Evolution &amp; development</topic><topic>Evolutionary genetics</topic><topic>Gene clusters</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>Natural products</topic><topic>Phenotypes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chevrette, Marc G</creatorcontrib><creatorcontrib>Gutiérrez-García, Karina</creatorcontrib><creatorcontrib>Selem-Mojica, Nelly</creatorcontrib><creatorcontrib>Aguilar-Martínez, César</creatorcontrib><creatorcontrib>Yañez-Olvera, Alan</creatorcontrib><creatorcontrib>Ramos-Aboites, Hilda E</creatorcontrib><creatorcontrib>Hoskisson, Paul A</creatorcontrib><creatorcontrib>Barona-Gómez, Francisco</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Natural product reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chevrette, Marc G</au><au>Gutiérrez-García, Karina</au><au>Selem-Mojica, Nelly</au><au>Aguilar-Martínez, César</au><au>Yañez-Olvera, Alan</au><au>Ramos-Aboites, Hilda E</au><au>Hoskisson, Paul A</au><au>Barona-Gómez, Francisco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evolutionary dynamics of natural product biosynthesis in bacteria</atitle><jtitle>Natural product reports</jtitle><addtitle>Nat Prod Rep</addtitle><date>2020-04-01</date><risdate>2020</risdate><volume>37</volume><issue>4</issue><spage>566</spage><epage>599</epage><pages>566-599</pages><issn>0265-0568</issn><eissn>1460-4752</eissn><abstract>Covering: 2008 up to 2019 The forces of biochemical adaptive evolution operate at the level of genes, manifesting in complex phenotypes and the global biodiversity of proteins and metabolites. While evolutionary histories have been deciphered for some other complex traits, the origins of natural product biosynthesis largely remain a mystery. This fundamental knowledge gap is surprising given the many decades of research probing the genetic, chemical, and biophysical mechanisms of bacterial natural product biosynthesis. Recently, evolutionary thinking has begun to permeate this otherwise mechanistically dominated field. Natural products are now sometimes referred to as 'specialized' rather than 'secondary' metabolites, reinforcing the importance of their biological and ecological functions. Here, we review known evolutionary mechanisms underlying the overwhelming chemical diversity of bacterial secondary metabolism, focusing on enzyme promiscuity and the evolution of enzymatic domains that enable metabolic traits. We discuss the mechanisms that drive the assembly of natural product biosynthetic gene clusters and propose formal definitions for 'specialized' and 'secondary' metabolism. We further explore how biosynthetic gene clusters evolve to synthesize related molecular species, and in turn how the biological and ecological roles that emerge from metabolic diversity are acted on by selection. Finally, we reconcile chemical, functional, and genetic data into an evolutionary model, the dynamic chemical matrix evolutionary hypothesis, in which the relationships between chemical distance, biomolecular activity, and relative fitness shape adaptive landscapes. We review known evolutionary mechanisms underlying the overwhelming chemical diversity of bacterial natural products biosynthesis, focusing on enzyme promiscuity and the evolution of enzymatic domains that enable metabolic traits.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>31822877</pmid><doi>10.1039/c9np00048h</doi><tpages>34</tpages><orcidid>https://orcid.org/0000-0002-7209-0717</orcidid><orcidid>https://orcid.org/0000-0003-4332-1640</orcidid><orcidid>https://orcid.org/0000-0003-1492-9497</orcidid><orcidid>https://orcid.org/0000-0003-1697-3862</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0265-0568
ispartof Natural product reports, 2020-04, Vol.37 (4), p.566-599
issn 0265-0568
1460-4752
language eng
recordid cdi_proquest_miscellaneous_2324909249
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Bacteria
Biodiversity
Biological evolution
Biosynthesis
Chemical activity
Chemical synthesis
Ecological function
Evolution & development
Evolutionary genetics
Gene clusters
Metabolism
Metabolites
Natural products
Phenotypes
title Evolutionary dynamics of natural product biosynthesis in bacteria
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T18%3A39%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evolutionary%20dynamics%20of%20natural%20product%20biosynthesis%20in%20bacteria&rft.jtitle=Natural%20product%20reports&rft.au=Chevrette,%20Marc%20G&rft.date=2020-04-01&rft.volume=37&rft.issue=4&rft.spage=566&rft.epage=599&rft.pages=566-599&rft.issn=0265-0568&rft.eissn=1460-4752&rft_id=info:doi/10.1039/c9np00048h&rft_dat=%3Cproquest_cross%3E2324909249%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2395692161&rft_id=info:pmid/31822877&rfr_iscdi=true