Faint gray bands in Drosophila melanogaster polytene chromosomes are formed by coding sequences of housekeeping genes

In Drosophila melanogaster , the chromatin of interphase polytene chromosomes appears as alternating decondensed interbands and dense black or thin gray bands. Recently, we uncovered four principle chromatin states (4НММ model) in the fruit fly, and these were matched to the structures observed in p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chromosoma 2020-03, Vol.129 (1), p.25-44
Hauptverfasser: Demakova, Olga V., Demakov, Sergey A., Boldyreva, Lidiya V., Zykova, Tatyana Yu, Levitsky, Victor G., Semeshin, Valeriy F., Pokholkova, Galina V., Sidorenko, Darya S., Goncharov, Fedor P., Belyaeva, Elena S., Zhimulev, Igor F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 44
container_issue 1
container_start_page 25
container_title Chromosoma
container_volume 129
creator Demakova, Olga V.
Demakov, Sergey A.
Boldyreva, Lidiya V.
Zykova, Tatyana Yu
Levitsky, Victor G.
Semeshin, Valeriy F.
Pokholkova, Galina V.
Sidorenko, Darya S.
Goncharov, Fedor P.
Belyaeva, Elena S.
Zhimulev, Igor F.
description In Drosophila melanogaster , the chromatin of interphase polytene chromosomes appears as alternating decondensed interbands and dense black or thin gray bands. Recently, we uncovered four principle chromatin states (4НММ model) in the fruit fly, and these were matched to the structures observed in polytene chromosomes. Ruby/malachite chromatin states form black bands containing developmental genes, whereas aquamarine chromatin corresponds to interbands enriched with 5′ regions of ubiquitously expressed genes. Lazurite chromatin supposedly forms faint gray bands and encompasses the bodies of housekeeping genes. In this report, we test this idea using the X chromosome as the model and MSL1 as a protein marker of the lazurite chromatin. Our bioinformatic analysis indicates that in the X chromosome, it is only the lazurite chromatin that is simultaneously enriched for the proteins and histone marks associated with exons, transcription elongation, and dosage compensation. As a result of FISH and EM mapping of a dosage compensation complex subunit, MSL1, we for the first time provide direct evidence that lazurite chromatin forms faint gray bands. Our analysis proves that overall most of housekeeping genes typically span from the interbands (5′ region of the gene) to the gray band (gene body). More rarely, active lazurite chromatin and inactive malachite/ruby chromatin may be found within a common band, where both the housekeeping and the developmental genes reside together.
doi_str_mv 10.1007/s00412-019-00728-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2323470002</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2354927011</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-3029e56e3049d4b159982626648d6f691d2f1c0b4805071e789915ef0687f5563</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhi0EotuWP8ABWeLCJXTsxI59RC0tSJV6oWfLSSbZlMQOdnLYf88sW0DiwMkazzPvfLyMvRXwUQDUVxmgErIAYQsKpSnkC7YTVUlfxuiXbAcAtlBWqDN2nvPTMZQaXrOzUhgJYPSObbd-DCsfkj_wxocu8zHwmxRzXPbj5PmMkw9x8HnFxJc4HVYMyNt9ijMxM2buE_I-phk73hx4G7sxDDzjjw1DS-nY833cMn5HXI6ZgerzJXvV-ynjm-f3gj3efv52_aW4f7j7ev3pvmjLWq1FCdKi0lhCZbuqEcpaI7XUujKd7rUVnexFC01lQEEtsDaWlsUetKl7pXR5wT6cdJcUaaC8unnMLU60E9JQTpayrGq6iyT0_T_oU9xSoOmIUpWVNQhBlDxRLZ0oJ-zdksbZp4MT4I6muJMpjkxxv0xxR-l3z9JbQ2f6U_LbBQLKE5ApFQZMf3v_R_Yn-MOWsA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2354927011</pqid></control><display><type>article</type><title>Faint gray bands in Drosophila melanogaster polytene chromosomes are formed by coding sequences of housekeeping genes</title><source>Springer Nature - Complete Springer Journals</source><creator>Demakova, Olga V. ; Demakov, Sergey A. ; Boldyreva, Lidiya V. ; Zykova, Tatyana Yu ; Levitsky, Victor G. ; Semeshin, Valeriy F. ; Pokholkova, Galina V. ; Sidorenko, Darya S. ; Goncharov, Fedor P. ; Belyaeva, Elena S. ; Zhimulev, Igor F.</creator><creatorcontrib>Demakova, Olga V. ; Demakov, Sergey A. ; Boldyreva, Lidiya V. ; Zykova, Tatyana Yu ; Levitsky, Victor G. ; Semeshin, Valeriy F. ; Pokholkova, Galina V. ; Sidorenko, Darya S. ; Goncharov, Fedor P. ; Belyaeva, Elena S. ; Zhimulev, Igor F.</creatorcontrib><description>In Drosophila melanogaster , the chromatin of interphase polytene chromosomes appears as alternating decondensed interbands and dense black or thin gray bands. Recently, we uncovered four principle chromatin states (4НММ model) in the fruit fly, and these were matched to the structures observed in polytene chromosomes. Ruby/malachite chromatin states form black bands containing developmental genes, whereas aquamarine chromatin corresponds to interbands enriched with 5′ regions of ubiquitously expressed genes. Lazurite chromatin supposedly forms faint gray bands and encompasses the bodies of housekeeping genes. In this report, we test this idea using the X chromosome as the model and MSL1 as a protein marker of the lazurite chromatin. Our bioinformatic analysis indicates that in the X chromosome, it is only the lazurite chromatin that is simultaneously enriched for the proteins and histone marks associated with exons, transcription elongation, and dosage compensation. As a result of FISH and EM mapping of a dosage compensation complex subunit, MSL1, we for the first time provide direct evidence that lazurite chromatin forms faint gray bands. Our analysis proves that overall most of housekeeping genes typically span from the interbands (5′ region of the gene) to the gray band (gene body). More rarely, active lazurite chromatin and inactive malachite/ruby chromatin may be found within a common band, where both the housekeeping and the developmental genes reside together.</description><identifier>ISSN: 0009-5915</identifier><identifier>EISSN: 1432-0886</identifier><identifier>DOI: 10.1007/s00412-019-00728-2</identifier><identifier>PMID: 31820086</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Animal Genetics and Genomics ; Biochemistry ; Biomedical and Life Sciences ; Cell Biology ; Chromatin ; Chromosomes ; Developmental Biology ; Dosage compensation ; Drosophila melanogaster ; Eukaryotic Microbiology ; Exons ; Gene mapping ; Genes ; Human Genetics ; Insects ; Life Sciences ; Original Article ; Polytene ; Polytene chromosomes ; Transcription elongation ; X chromosomes</subject><ispartof>Chromosoma, 2020-03, Vol.129 (1), p.25-44</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>Chromosoma is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-3029e56e3049d4b159982626648d6f691d2f1c0b4805071e789915ef0687f5563</citedby><cites>FETCH-LOGICAL-c375t-3029e56e3049d4b159982626648d6f691d2f1c0b4805071e789915ef0687f5563</cites><orcidid>0000-0002-6220-3028</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00412-019-00728-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00412-019-00728-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31820086$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Demakova, Olga V.</creatorcontrib><creatorcontrib>Demakov, Sergey A.</creatorcontrib><creatorcontrib>Boldyreva, Lidiya V.</creatorcontrib><creatorcontrib>Zykova, Tatyana Yu</creatorcontrib><creatorcontrib>Levitsky, Victor G.</creatorcontrib><creatorcontrib>Semeshin, Valeriy F.</creatorcontrib><creatorcontrib>Pokholkova, Galina V.</creatorcontrib><creatorcontrib>Sidorenko, Darya S.</creatorcontrib><creatorcontrib>Goncharov, Fedor P.</creatorcontrib><creatorcontrib>Belyaeva, Elena S.</creatorcontrib><creatorcontrib>Zhimulev, Igor F.</creatorcontrib><title>Faint gray bands in Drosophila melanogaster polytene chromosomes are formed by coding sequences of housekeeping genes</title><title>Chromosoma</title><addtitle>Chromosoma</addtitle><addtitle>Chromosoma</addtitle><description>In Drosophila melanogaster , the chromatin of interphase polytene chromosomes appears as alternating decondensed interbands and dense black or thin gray bands. Recently, we uncovered four principle chromatin states (4НММ model) in the fruit fly, and these were matched to the structures observed in polytene chromosomes. Ruby/malachite chromatin states form black bands containing developmental genes, whereas aquamarine chromatin corresponds to interbands enriched with 5′ regions of ubiquitously expressed genes. Lazurite chromatin supposedly forms faint gray bands and encompasses the bodies of housekeeping genes. In this report, we test this idea using the X chromosome as the model and MSL1 as a protein marker of the lazurite chromatin. Our bioinformatic analysis indicates that in the X chromosome, it is only the lazurite chromatin that is simultaneously enriched for the proteins and histone marks associated with exons, transcription elongation, and dosage compensation. As a result of FISH and EM mapping of a dosage compensation complex subunit, MSL1, we for the first time provide direct evidence that lazurite chromatin forms faint gray bands. Our analysis proves that overall most of housekeeping genes typically span from the interbands (5′ region of the gene) to the gray band (gene body). More rarely, active lazurite chromatin and inactive malachite/ruby chromatin may be found within a common band, where both the housekeeping and the developmental genes reside together.</description><subject>Animal Genetics and Genomics</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Cell Biology</subject><subject>Chromatin</subject><subject>Chromosomes</subject><subject>Developmental Biology</subject><subject>Dosage compensation</subject><subject>Drosophila melanogaster</subject><subject>Eukaryotic Microbiology</subject><subject>Exons</subject><subject>Gene mapping</subject><subject>Genes</subject><subject>Human Genetics</subject><subject>Insects</subject><subject>Life Sciences</subject><subject>Original Article</subject><subject>Polytene</subject><subject>Polytene chromosomes</subject><subject>Transcription elongation</subject><subject>X chromosomes</subject><issn>0009-5915</issn><issn>1432-0886</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kU1v1DAQhi0EotuWP8ABWeLCJXTsxI59RC0tSJV6oWfLSSbZlMQOdnLYf88sW0DiwMkazzPvfLyMvRXwUQDUVxmgErIAYQsKpSnkC7YTVUlfxuiXbAcAtlBWqDN2nvPTMZQaXrOzUhgJYPSObbd-DCsfkj_wxocu8zHwmxRzXPbj5PmMkw9x8HnFxJc4HVYMyNt9ijMxM2buE_I-phk73hx4G7sxDDzjjw1DS-nY833cMn5HXI6ZgerzJXvV-ynjm-f3gj3efv52_aW4f7j7ev3pvmjLWq1FCdKi0lhCZbuqEcpaI7XUujKd7rUVnexFC01lQEEtsDaWlsUetKl7pXR5wT6cdJcUaaC8unnMLU60E9JQTpayrGq6iyT0_T_oU9xSoOmIUpWVNQhBlDxRLZ0oJ-zdksbZp4MT4I6muJMpjkxxv0xxR-l3z9JbQ2f6U_LbBQLKE5ApFQZMf3v_R_Yn-MOWsA</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Demakova, Olga V.</creator><creator>Demakov, Sergey A.</creator><creator>Boldyreva, Lidiya V.</creator><creator>Zykova, Tatyana Yu</creator><creator>Levitsky, Victor G.</creator><creator>Semeshin, Valeriy F.</creator><creator>Pokholkova, Galina V.</creator><creator>Sidorenko, Darya S.</creator><creator>Goncharov, Fedor P.</creator><creator>Belyaeva, Elena S.</creator><creator>Zhimulev, Igor F.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6220-3028</orcidid></search><sort><creationdate>20200301</creationdate><title>Faint gray bands in Drosophila melanogaster polytene chromosomes are formed by coding sequences of housekeeping genes</title><author>Demakova, Olga V. ; Demakov, Sergey A. ; Boldyreva, Lidiya V. ; Zykova, Tatyana Yu ; Levitsky, Victor G. ; Semeshin, Valeriy F. ; Pokholkova, Galina V. ; Sidorenko, Darya S. ; Goncharov, Fedor P. ; Belyaeva, Elena S. ; Zhimulev, Igor F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-3029e56e3049d4b159982626648d6f691d2f1c0b4805071e789915ef0687f5563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animal Genetics and Genomics</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Cell Biology</topic><topic>Chromatin</topic><topic>Chromosomes</topic><topic>Developmental Biology</topic><topic>Dosage compensation</topic><topic>Drosophila melanogaster</topic><topic>Eukaryotic Microbiology</topic><topic>Exons</topic><topic>Gene mapping</topic><topic>Genes</topic><topic>Human Genetics</topic><topic>Insects</topic><topic>Life Sciences</topic><topic>Original Article</topic><topic>Polytene</topic><topic>Polytene chromosomes</topic><topic>Transcription elongation</topic><topic>X chromosomes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Demakova, Olga V.</creatorcontrib><creatorcontrib>Demakov, Sergey A.</creatorcontrib><creatorcontrib>Boldyreva, Lidiya V.</creatorcontrib><creatorcontrib>Zykova, Tatyana Yu</creatorcontrib><creatorcontrib>Levitsky, Victor G.</creatorcontrib><creatorcontrib>Semeshin, Valeriy F.</creatorcontrib><creatorcontrib>Pokholkova, Galina V.</creatorcontrib><creatorcontrib>Sidorenko, Darya S.</creatorcontrib><creatorcontrib>Goncharov, Fedor P.</creatorcontrib><creatorcontrib>Belyaeva, Elena S.</creatorcontrib><creatorcontrib>Zhimulev, Igor F.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Chromosoma</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Demakova, Olga V.</au><au>Demakov, Sergey A.</au><au>Boldyreva, Lidiya V.</au><au>Zykova, Tatyana Yu</au><au>Levitsky, Victor G.</au><au>Semeshin, Valeriy F.</au><au>Pokholkova, Galina V.</au><au>Sidorenko, Darya S.</au><au>Goncharov, Fedor P.</au><au>Belyaeva, Elena S.</au><au>Zhimulev, Igor F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Faint gray bands in Drosophila melanogaster polytene chromosomes are formed by coding sequences of housekeeping genes</atitle><jtitle>Chromosoma</jtitle><stitle>Chromosoma</stitle><addtitle>Chromosoma</addtitle><date>2020-03-01</date><risdate>2020</risdate><volume>129</volume><issue>1</issue><spage>25</spage><epage>44</epage><pages>25-44</pages><issn>0009-5915</issn><eissn>1432-0886</eissn><abstract>In Drosophila melanogaster , the chromatin of interphase polytene chromosomes appears as alternating decondensed interbands and dense black or thin gray bands. Recently, we uncovered four principle chromatin states (4НММ model) in the fruit fly, and these were matched to the structures observed in polytene chromosomes. Ruby/malachite chromatin states form black bands containing developmental genes, whereas aquamarine chromatin corresponds to interbands enriched with 5′ regions of ubiquitously expressed genes. Lazurite chromatin supposedly forms faint gray bands and encompasses the bodies of housekeeping genes. In this report, we test this idea using the X chromosome as the model and MSL1 as a protein marker of the lazurite chromatin. Our bioinformatic analysis indicates that in the X chromosome, it is only the lazurite chromatin that is simultaneously enriched for the proteins and histone marks associated with exons, transcription elongation, and dosage compensation. As a result of FISH and EM mapping of a dosage compensation complex subunit, MSL1, we for the first time provide direct evidence that lazurite chromatin forms faint gray bands. Our analysis proves that overall most of housekeeping genes typically span from the interbands (5′ region of the gene) to the gray band (gene body). More rarely, active lazurite chromatin and inactive malachite/ruby chromatin may be found within a common band, where both the housekeeping and the developmental genes reside together.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>31820086</pmid><doi>10.1007/s00412-019-00728-2</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-6220-3028</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0009-5915
ispartof Chromosoma, 2020-03, Vol.129 (1), p.25-44
issn 0009-5915
1432-0886
language eng
recordid cdi_proquest_miscellaneous_2323470002
source Springer Nature - Complete Springer Journals
subjects Animal Genetics and Genomics
Biochemistry
Biomedical and Life Sciences
Cell Biology
Chromatin
Chromosomes
Developmental Biology
Dosage compensation
Drosophila melanogaster
Eukaryotic Microbiology
Exons
Gene mapping
Genes
Human Genetics
Insects
Life Sciences
Original Article
Polytene
Polytene chromosomes
Transcription elongation
X chromosomes
title Faint gray bands in Drosophila melanogaster polytene chromosomes are formed by coding sequences of housekeeping genes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T21%3A14%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Faint%20gray%20bands%20in%20Drosophila%20melanogaster%20polytene%20chromosomes%20are%20formed%20by%20coding%20sequences%20of%20housekeeping%20genes&rft.jtitle=Chromosoma&rft.au=Demakova,%20Olga%20V.&rft.date=2020-03-01&rft.volume=129&rft.issue=1&rft.spage=25&rft.epage=44&rft.pages=25-44&rft.issn=0009-5915&rft.eissn=1432-0886&rft_id=info:doi/10.1007/s00412-019-00728-2&rft_dat=%3Cproquest_cross%3E2354927011%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2354927011&rft_id=info:pmid/31820086&rfr_iscdi=true