Thermal Stability Change of Insoluble Sulfur by a Heat Treatment and Its Mechanism Study
Insoluble sulfur (IS), used as a vulcanizing reagent of rubber, is prepared by the thermal ring-opening polymerization of sulfur (S8). Enhancing its thermal stability and content ratio (yield) is important for the industrial production of IS. The post-heating process at a high temperature of 70 or 9...
Gespeichert in:
Veröffentlicht in: | Analytical Sciences 2020/01/10, Vol.36(1), pp.75-79 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 79 |
---|---|
container_issue | 1 |
container_start_page | 75 |
container_title | Analytical Sciences |
container_volume | 36 |
creator | TERADA, Naoki KOUGE, Katsushige KOMAGUCHI, Kenji HAYAKAWA, Shinjiro TSUTSUMI, Hiromori |
description | Insoluble sulfur (IS), used as a vulcanizing reagent of rubber, is prepared by the thermal ring-opening polymerization of sulfur (S8). Enhancing its thermal stability and content ratio (yield) is important for the industrial production of IS. The post-heating process at a high temperature of 70 or 90°C of the mixture of IS and S8 enhanced the thermal stability of IS and reduced the yield of IS. Further, the process at 30°C enhanced its thermal stability and maintained its yield. Since the thermal stability of IS is considered to be closely related to the chain length of polymer sulfur, a method for determining the chain length of IS was investigated by quantifying the amount of electron spin of radicals from sulfur, estimated from electron spin resonance (ESR) measurements. We confirmed that the long-period post-heating process at 30°C induced high thermal stability without reducing the yield of IS due to growth of the sulfur polymer chains. |
doi_str_mv | 10.2116/analsci.19SAP05 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2322809165</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2349818988</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6602-fdc5a0217be95233d0b094095f8cb74458a765fb53b86351dba696b6a88917fa3</originalsourceid><addsrcrecordid>eNp1kc9r2zAYhsVYWdJ0592GYJddnOiHpUjHELI10LFCUthNfLLl1kG2U8k-5L-vOqcZFHb5dPie95V4hNAXSuaMUrmAFnws6jnVu9U9ER_QlPJcZYzl8iOaEk1JJnlOJug6xgMhlCnGPqEJp4pypeUU_dk_udCAx7sebO3r_oTXT9A-OtxVeNvGzg_WO7wbfDUEbE8Y8K2DHu9Dmo1rewxtibd9xL9ckYJ1bFLVUJ5u0FWV3uY-n88Zevix2a9vs7vfP7fr1V1WSElYVpWFAMLo0jotGOclsUTnRItKFXaZ50LBUorKCm6V5IKWFqSWVoJSmi4r4DP0few9hu55cLE3TR0L5z20rhuiYZwxlURIkdBv79BDN4RXg4nKtaJKK5WoxUgVoYsxuMocQ91AOBlKzKt0c5ZuztJT4uu5d7CNKy_8m-UEkBGIaZXchn8X_79zM0YOsYdHd-mE0NeFdxeeS0P_jjF32ae_CMa1_AWNiabJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2349818988</pqid></control><display><type>article</type><title>Thermal Stability Change of Insoluble Sulfur by a Heat Treatment and Its Mechanism Study</title><source>J-STAGE Free</source><source>SpringerNature Journals</source><source>Freely Accessible Japanese Titles</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Free Full-Text Journals in Chemistry</source><creator>TERADA, Naoki ; KOUGE, Katsushige ; KOMAGUCHI, Kenji ; HAYAKAWA, Shinjiro ; TSUTSUMI, Hiromori</creator><creatorcontrib>TERADA, Naoki ; KOUGE, Katsushige ; KOMAGUCHI, Kenji ; HAYAKAWA, Shinjiro ; TSUTSUMI, Hiromori</creatorcontrib><description>Insoluble sulfur (IS), used as a vulcanizing reagent of rubber, is prepared by the thermal ring-opening polymerization of sulfur (S8). Enhancing its thermal stability and content ratio (yield) is important for the industrial production of IS. The post-heating process at a high temperature of 70 or 90°C of the mixture of IS and S8 enhanced the thermal stability of IS and reduced the yield of IS. Further, the process at 30°C enhanced its thermal stability and maintained its yield. Since the thermal stability of IS is considered to be closely related to the chain length of polymer sulfur, a method for determining the chain length of IS was investigated by quantifying the amount of electron spin of radicals from sulfur, estimated from electron spin resonance (ESR) measurements. We confirmed that the long-period post-heating process at 30°C induced high thermal stability without reducing the yield of IS due to growth of the sulfur polymer chains.</description><identifier>ISSN: 0910-6340</identifier><identifier>EISSN: 1348-2246</identifier><identifier>DOI: 10.2116/analsci.19SAP05</identifier><identifier>PMID: 31813896</identifier><language>eng</language><publisher>Singapore: The Japan Society for Analytical Chemistry</publisher><subject>Analytical Chemistry ; chain length ; Chains (polymeric) ; Chemistry ; Electron paramagnetic resonance ; Electron spin ; Electron spin resonance ; ESR ; Food processing industry ; Heat treatment ; High temperature ; Industrial production ; Insoluble sulfur ; polymer sulfur ; Polymerization ; Polymers ; Reagents ; Ring opening polymerization ; Rubber ; rubber vulcanizing agent ; Spin resonance ; Sulfur ; Thermal stability ; Vulcanization ; Yield</subject><ispartof>Analytical Sciences, 2020/01/10, Vol.36(1), pp.75-79</ispartof><rights>2020 by The Japan Society for Analytical Chemistry</rights><rights>The Japan Society for Analytical Chemistry 2020</rights><rights>Copyright Japan Science and Technology Agency 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6602-fdc5a0217be95233d0b094095f8cb74458a765fb53b86351dba696b6a88917fa3</citedby><cites>FETCH-LOGICAL-c6602-fdc5a0217be95233d0b094095f8cb74458a765fb53b86351dba696b6a88917fa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.2116/analsci.19SAP05$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.2116/analsci.19SAP05$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,1883,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31813896$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>TERADA, Naoki</creatorcontrib><creatorcontrib>KOUGE, Katsushige</creatorcontrib><creatorcontrib>KOMAGUCHI, Kenji</creatorcontrib><creatorcontrib>HAYAKAWA, Shinjiro</creatorcontrib><creatorcontrib>TSUTSUMI, Hiromori</creatorcontrib><title>Thermal Stability Change of Insoluble Sulfur by a Heat Treatment and Its Mechanism Study</title><title>Analytical Sciences</title><addtitle>ANAL. SCI</addtitle><addtitle>Anal Sci</addtitle><description>Insoluble sulfur (IS), used as a vulcanizing reagent of rubber, is prepared by the thermal ring-opening polymerization of sulfur (S8). Enhancing its thermal stability and content ratio (yield) is important for the industrial production of IS. The post-heating process at a high temperature of 70 or 90°C of the mixture of IS and S8 enhanced the thermal stability of IS and reduced the yield of IS. Further, the process at 30°C enhanced its thermal stability and maintained its yield. Since the thermal stability of IS is considered to be closely related to the chain length of polymer sulfur, a method for determining the chain length of IS was investigated by quantifying the amount of electron spin of radicals from sulfur, estimated from electron spin resonance (ESR) measurements. We confirmed that the long-period post-heating process at 30°C induced high thermal stability without reducing the yield of IS due to growth of the sulfur polymer chains.</description><subject>Analytical Chemistry</subject><subject>chain length</subject><subject>Chains (polymeric)</subject><subject>Chemistry</subject><subject>Electron paramagnetic resonance</subject><subject>Electron spin</subject><subject>Electron spin resonance</subject><subject>ESR</subject><subject>Food processing industry</subject><subject>Heat treatment</subject><subject>High temperature</subject><subject>Industrial production</subject><subject>Insoluble sulfur</subject><subject>polymer sulfur</subject><subject>Polymerization</subject><subject>Polymers</subject><subject>Reagents</subject><subject>Ring opening polymerization</subject><subject>Rubber</subject><subject>rubber vulcanizing agent</subject><subject>Spin resonance</subject><subject>Sulfur</subject><subject>Thermal stability</subject><subject>Vulcanization</subject><subject>Yield</subject><issn>0910-6340</issn><issn>1348-2246</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kc9r2zAYhsVYWdJ0592GYJddnOiHpUjHELI10LFCUthNfLLl1kG2U8k-5L-vOqcZFHb5dPie95V4hNAXSuaMUrmAFnws6jnVu9U9ER_QlPJcZYzl8iOaEk1JJnlOJug6xgMhlCnGPqEJp4pypeUU_dk_udCAx7sebO3r_oTXT9A-OtxVeNvGzg_WO7wbfDUEbE8Y8K2DHu9Dmo1rewxtibd9xL9ckYJ1bFLVUJ5u0FWV3uY-n88Zevix2a9vs7vfP7fr1V1WSElYVpWFAMLo0jotGOclsUTnRItKFXaZ50LBUorKCm6V5IKWFqSWVoJSmi4r4DP0few9hu55cLE3TR0L5z20rhuiYZwxlURIkdBv79BDN4RXg4nKtaJKK5WoxUgVoYsxuMocQ91AOBlKzKt0c5ZuztJT4uu5d7CNKy_8m-UEkBGIaZXchn8X_79zM0YOsYdHd-mE0NeFdxeeS0P_jjF32ae_CMa1_AWNiabJ</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>TERADA, Naoki</creator><creator>KOUGE, Katsushige</creator><creator>KOMAGUCHI, Kenji</creator><creator>HAYAKAWA, Shinjiro</creator><creator>TSUTSUMI, Hiromori</creator><general>The Japan Society for Analytical Chemistry</general><general>Springer Nature Singapore</general><general>Japan Science and Technology Agency</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SE</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>H8G</scope><scope>JG9</scope><scope>L7M</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20200101</creationdate><title>Thermal Stability Change of Insoluble Sulfur by a Heat Treatment and Its Mechanism Study</title><author>TERADA, Naoki ; KOUGE, Katsushige ; KOMAGUCHI, Kenji ; HAYAKAWA, Shinjiro ; TSUTSUMI, Hiromori</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6602-fdc5a0217be95233d0b094095f8cb74458a765fb53b86351dba696b6a88917fa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Analytical Chemistry</topic><topic>chain length</topic><topic>Chains (polymeric)</topic><topic>Chemistry</topic><topic>Electron paramagnetic resonance</topic><topic>Electron spin</topic><topic>Electron spin resonance</topic><topic>ESR</topic><topic>Food processing industry</topic><topic>Heat treatment</topic><topic>High temperature</topic><topic>Industrial production</topic><topic>Insoluble sulfur</topic><topic>polymer sulfur</topic><topic>Polymerization</topic><topic>Polymers</topic><topic>Reagents</topic><topic>Ring opening polymerization</topic><topic>Rubber</topic><topic>rubber vulcanizing agent</topic><topic>Spin resonance</topic><topic>Sulfur</topic><topic>Thermal stability</topic><topic>Vulcanization</topic><topic>Yield</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>TERADA, Naoki</creatorcontrib><creatorcontrib>KOUGE, Katsushige</creatorcontrib><creatorcontrib>KOMAGUCHI, Kenji</creatorcontrib><creatorcontrib>HAYAKAWA, Shinjiro</creatorcontrib><creatorcontrib>TSUTSUMI, Hiromori</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical Sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>TERADA, Naoki</au><au>KOUGE, Katsushige</au><au>KOMAGUCHI, Kenji</au><au>HAYAKAWA, Shinjiro</au><au>TSUTSUMI, Hiromori</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal Stability Change of Insoluble Sulfur by a Heat Treatment and Its Mechanism Study</atitle><jtitle>Analytical Sciences</jtitle><stitle>ANAL. SCI</stitle><addtitle>Anal Sci</addtitle><date>2020-01-01</date><risdate>2020</risdate><volume>36</volume><issue>1</issue><spage>75</spage><epage>79</epage><pages>75-79</pages><issn>0910-6340</issn><eissn>1348-2246</eissn><abstract>Insoluble sulfur (IS), used as a vulcanizing reagent of rubber, is prepared by the thermal ring-opening polymerization of sulfur (S8). Enhancing its thermal stability and content ratio (yield) is important for the industrial production of IS. The post-heating process at a high temperature of 70 or 90°C of the mixture of IS and S8 enhanced the thermal stability of IS and reduced the yield of IS. Further, the process at 30°C enhanced its thermal stability and maintained its yield. Since the thermal stability of IS is considered to be closely related to the chain length of polymer sulfur, a method for determining the chain length of IS was investigated by quantifying the amount of electron spin of radicals from sulfur, estimated from electron spin resonance (ESR) measurements. We confirmed that the long-period post-heating process at 30°C induced high thermal stability without reducing the yield of IS due to growth of the sulfur polymer chains.</abstract><cop>Singapore</cop><pub>The Japan Society for Analytical Chemistry</pub><pmid>31813896</pmid><doi>10.2116/analsci.19SAP05</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0910-6340 |
ispartof | Analytical Sciences, 2020/01/10, Vol.36(1), pp.75-79 |
issn | 0910-6340 1348-2246 |
language | eng |
recordid | cdi_proquest_miscellaneous_2322809165 |
source | J-STAGE Free; SpringerNature Journals; Freely Accessible Japanese Titles; EZB-FREE-00999 freely available EZB journals; Free Full-Text Journals in Chemistry |
subjects | Analytical Chemistry chain length Chains (polymeric) Chemistry Electron paramagnetic resonance Electron spin Electron spin resonance ESR Food processing industry Heat treatment High temperature Industrial production Insoluble sulfur polymer sulfur Polymerization Polymers Reagents Ring opening polymerization Rubber rubber vulcanizing agent Spin resonance Sulfur Thermal stability Vulcanization Yield |
title | Thermal Stability Change of Insoluble Sulfur by a Heat Treatment and Its Mechanism Study |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T03%3A14%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20Stability%20Change%20of%20Insoluble%20Sulfur%20by%20a%20Heat%20Treatment%20and%20Its%20Mechanism%20Study&rft.jtitle=Analytical%20Sciences&rft.au=TERADA,%20Naoki&rft.date=2020-01-01&rft.volume=36&rft.issue=1&rft.spage=75&rft.epage=79&rft.pages=75-79&rft.issn=0910-6340&rft.eissn=1348-2246&rft_id=info:doi/10.2116/analsci.19SAP05&rft_dat=%3Cproquest_cross%3E2349818988%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2349818988&rft_id=info:pmid/31813896&rfr_iscdi=true |