Microplasma Cross-Linked Graphene Oxide-Gelatin Hydrogel for Cartilage Reconstructive Surgery
Herein, we report the cartilage tissue engineering application of nanographene oxide (NGO)-reinforced gelatin hydrogel fabricated by utilizing a microplasma-assisted cross-linking method. NGO sheets with surface functionalities were introduced to enhance the mechanical and biomedical properties of g...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2020-01, Vol.12 (1), p.86-95 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 95 |
---|---|
container_issue | 1 |
container_start_page | 86 |
container_title | ACS applied materials & interfaces |
container_volume | 12 |
creator | Satapathy, Mantosh Kumar Manga, Yankuba B Ostrikov, Kostya Ken Chiang, Wei-Hung Pandey, Aditi R, Lekha Nyambat, Batzaya Chuang, Er-Yuan Chen, Chih-Hwa |
description | Herein, we report the cartilage tissue engineering application of nanographene oxide (NGO)-reinforced gelatin hydrogel fabricated by utilizing a microplasma-assisted cross-linking method. NGO sheets with surface functionalities were introduced to enhance the mechanical and biomedical properties of gelatin-based hydrogels. Highly energetic reactive radicals were generated from the nonthermal plasma (NTP), which is used to facilitate the cross-linking and polymerization during the polymeric hydrogel fabrication. The NTP treatment substantially reinforced a small amount (1 wt %) of NGO into the gelatin hydrogel. Systematic material characterization thus shows that the fabricated hydrogel possessed unique properties such as moderate surface roughness and adhesiveness, suitable pores sizes, temperature-dependent viscoelasticity, and controllable degradability. In vitro studies demonstrated that the as-fabricated hydrogel exhibited excellent cell–material interactions with SW 1353 cells, bone marrow-derived mesenchymal stem cells, and a rat chondrocyte cell line, thereby exhibiting appropriate cytocompatibility for cartilage tissue engineering applications. Furthermore, an in vivo study indicated that the formation of a healthy hyaline cartilage after the microfracture was enhanced by the fabricated hydrogel implant, offering a potential biocompatible platform for microfracture-based cartilage reconstructive surgery. |
doi_str_mv | 10.1021/acsami.9b14073 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2322738586</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2322738586</sourcerecordid><originalsourceid>FETCH-LOGICAL-a330t-847778f32fd10a448e39cbac1a983c9f26e88c929bfe2a30498e4449cd79b50c3</originalsourceid><addsrcrecordid>eNp1kEtLw0AUhQdRbK1uXUqWIqTOK83MUoK2QqXgYylhMrmpU5NMnEnE_ntTUrtzde_iOwfOh9AlwVOCKblV2qvKTGVGOI7ZERoTyXkoaESPDz_nI3Tm_QbjGaM4OkUjRgSWGIsxen8y2tmmVL5SQeKs9-HS1J-QB3Onmg-oIVj9mBzCOZSqNXWw2ObOrqEMCuuCRLnWlGoNwTNoW_vWdbo13xC8dG4NbnuOTgpVerjY3wl6e7h_TRbhcjV_TO6WoWIMt6HgcRyLgtEiJ1hxLoBJnSlNlBRMy4LOQAgtqcwKoIphLgVwzqXOY5lFWLMJuh56G2e_OvBtWhmvoSxVDbbzKWWUxkxEYtaj0wHVu7EOirRxplJumxKc7pSmg9J0r7QPXO27u6yC_ID_OeyBmwHog-nGdq7up_7X9gtXj4Gl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2322738586</pqid></control><display><type>article</type><title>Microplasma Cross-Linked Graphene Oxide-Gelatin Hydrogel for Cartilage Reconstructive Surgery</title><source>American Chemical Society Journals</source><creator>Satapathy, Mantosh Kumar ; Manga, Yankuba B ; Ostrikov, Kostya Ken ; Chiang, Wei-Hung ; Pandey, Aditi ; R, Lekha ; Nyambat, Batzaya ; Chuang, Er-Yuan ; Chen, Chih-Hwa</creator><creatorcontrib>Satapathy, Mantosh Kumar ; Manga, Yankuba B ; Ostrikov, Kostya Ken ; Chiang, Wei-Hung ; Pandey, Aditi ; R, Lekha ; Nyambat, Batzaya ; Chuang, Er-Yuan ; Chen, Chih-Hwa</creatorcontrib><description>Herein, we report the cartilage tissue engineering application of nanographene oxide (NGO)-reinforced gelatin hydrogel fabricated by utilizing a microplasma-assisted cross-linking method. NGO sheets with surface functionalities were introduced to enhance the mechanical and biomedical properties of gelatin-based hydrogels. Highly energetic reactive radicals were generated from the nonthermal plasma (NTP), which is used to facilitate the cross-linking and polymerization during the polymeric hydrogel fabrication. The NTP treatment substantially reinforced a small amount (1 wt %) of NGO into the gelatin hydrogel. Systematic material characterization thus shows that the fabricated hydrogel possessed unique properties such as moderate surface roughness and adhesiveness, suitable pores sizes, temperature-dependent viscoelasticity, and controllable degradability. In vitro studies demonstrated that the as-fabricated hydrogel exhibited excellent cell–material interactions with SW 1353 cells, bone marrow-derived mesenchymal stem cells, and a rat chondrocyte cell line, thereby exhibiting appropriate cytocompatibility for cartilage tissue engineering applications. Furthermore, an in vivo study indicated that the formation of a healthy hyaline cartilage after the microfracture was enhanced by the fabricated hydrogel implant, offering a potential biocompatible platform for microfracture-based cartilage reconstructive surgery.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.9b14073</identifier><identifier>PMID: 31809008</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS applied materials & interfaces, 2020-01, Vol.12 (1), p.86-95</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a330t-847778f32fd10a448e39cbac1a983c9f26e88c929bfe2a30498e4449cd79b50c3</citedby><cites>FETCH-LOGICAL-a330t-847778f32fd10a448e39cbac1a983c9f26e88c929bfe2a30498e4449cd79b50c3</cites><orcidid>0000-0002-1593-4573 ; 0000-0002-6350-6696 ; 0000-0002-6646-7928 ; 0000-0001-8672-9297</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.9b14073$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.9b14073$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31809008$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Satapathy, Mantosh Kumar</creatorcontrib><creatorcontrib>Manga, Yankuba B</creatorcontrib><creatorcontrib>Ostrikov, Kostya Ken</creatorcontrib><creatorcontrib>Chiang, Wei-Hung</creatorcontrib><creatorcontrib>Pandey, Aditi</creatorcontrib><creatorcontrib>R, Lekha</creatorcontrib><creatorcontrib>Nyambat, Batzaya</creatorcontrib><creatorcontrib>Chuang, Er-Yuan</creatorcontrib><creatorcontrib>Chen, Chih-Hwa</creatorcontrib><title>Microplasma Cross-Linked Graphene Oxide-Gelatin Hydrogel for Cartilage Reconstructive Surgery</title><title>ACS applied materials & interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Herein, we report the cartilage tissue engineering application of nanographene oxide (NGO)-reinforced gelatin hydrogel fabricated by utilizing a microplasma-assisted cross-linking method. NGO sheets with surface functionalities were introduced to enhance the mechanical and biomedical properties of gelatin-based hydrogels. Highly energetic reactive radicals were generated from the nonthermal plasma (NTP), which is used to facilitate the cross-linking and polymerization during the polymeric hydrogel fabrication. The NTP treatment substantially reinforced a small amount (1 wt %) of NGO into the gelatin hydrogel. Systematic material characterization thus shows that the fabricated hydrogel possessed unique properties such as moderate surface roughness and adhesiveness, suitable pores sizes, temperature-dependent viscoelasticity, and controllable degradability. In vitro studies demonstrated that the as-fabricated hydrogel exhibited excellent cell–material interactions with SW 1353 cells, bone marrow-derived mesenchymal stem cells, and a rat chondrocyte cell line, thereby exhibiting appropriate cytocompatibility for cartilage tissue engineering applications. Furthermore, an in vivo study indicated that the formation of a healthy hyaline cartilage after the microfracture was enhanced by the fabricated hydrogel implant, offering a potential biocompatible platform for microfracture-based cartilage reconstructive surgery.</description><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLw0AUhQdRbK1uXUqWIqTOK83MUoK2QqXgYylhMrmpU5NMnEnE_ntTUrtzde_iOwfOh9AlwVOCKblV2qvKTGVGOI7ZERoTyXkoaESPDz_nI3Tm_QbjGaM4OkUjRgSWGIsxen8y2tmmVL5SQeKs9-HS1J-QB3Onmg-oIVj9mBzCOZSqNXWw2ObOrqEMCuuCRLnWlGoNwTNoW_vWdbo13xC8dG4NbnuOTgpVerjY3wl6e7h_TRbhcjV_TO6WoWIMt6HgcRyLgtEiJ1hxLoBJnSlNlBRMy4LOQAgtqcwKoIphLgVwzqXOY5lFWLMJuh56G2e_OvBtWhmvoSxVDbbzKWWUxkxEYtaj0wHVu7EOirRxplJumxKc7pSmg9J0r7QPXO27u6yC_ID_OeyBmwHog-nGdq7up_7X9gtXj4Gl</recordid><startdate>20200108</startdate><enddate>20200108</enddate><creator>Satapathy, Mantosh Kumar</creator><creator>Manga, Yankuba B</creator><creator>Ostrikov, Kostya Ken</creator><creator>Chiang, Wei-Hung</creator><creator>Pandey, Aditi</creator><creator>R, Lekha</creator><creator>Nyambat, Batzaya</creator><creator>Chuang, Er-Yuan</creator><creator>Chen, Chih-Hwa</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1593-4573</orcidid><orcidid>https://orcid.org/0000-0002-6350-6696</orcidid><orcidid>https://orcid.org/0000-0002-6646-7928</orcidid><orcidid>https://orcid.org/0000-0001-8672-9297</orcidid></search><sort><creationdate>20200108</creationdate><title>Microplasma Cross-Linked Graphene Oxide-Gelatin Hydrogel for Cartilage Reconstructive Surgery</title><author>Satapathy, Mantosh Kumar ; Manga, Yankuba B ; Ostrikov, Kostya Ken ; Chiang, Wei-Hung ; Pandey, Aditi ; R, Lekha ; Nyambat, Batzaya ; Chuang, Er-Yuan ; Chen, Chih-Hwa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a330t-847778f32fd10a448e39cbac1a983c9f26e88c929bfe2a30498e4449cd79b50c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Satapathy, Mantosh Kumar</creatorcontrib><creatorcontrib>Manga, Yankuba B</creatorcontrib><creatorcontrib>Ostrikov, Kostya Ken</creatorcontrib><creatorcontrib>Chiang, Wei-Hung</creatorcontrib><creatorcontrib>Pandey, Aditi</creatorcontrib><creatorcontrib>R, Lekha</creatorcontrib><creatorcontrib>Nyambat, Batzaya</creatorcontrib><creatorcontrib>Chuang, Er-Yuan</creatorcontrib><creatorcontrib>Chen, Chih-Hwa</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials & interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Satapathy, Mantosh Kumar</au><au>Manga, Yankuba B</au><au>Ostrikov, Kostya Ken</au><au>Chiang, Wei-Hung</au><au>Pandey, Aditi</au><au>R, Lekha</au><au>Nyambat, Batzaya</au><au>Chuang, Er-Yuan</au><au>Chen, Chih-Hwa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microplasma Cross-Linked Graphene Oxide-Gelatin Hydrogel for Cartilage Reconstructive Surgery</atitle><jtitle>ACS applied materials & interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2020-01-08</date><risdate>2020</risdate><volume>12</volume><issue>1</issue><spage>86</spage><epage>95</epage><pages>86-95</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Herein, we report the cartilage tissue engineering application of nanographene oxide (NGO)-reinforced gelatin hydrogel fabricated by utilizing a microplasma-assisted cross-linking method. NGO sheets with surface functionalities were introduced to enhance the mechanical and biomedical properties of gelatin-based hydrogels. Highly energetic reactive radicals were generated from the nonthermal plasma (NTP), which is used to facilitate the cross-linking and polymerization during the polymeric hydrogel fabrication. The NTP treatment substantially reinforced a small amount (1 wt %) of NGO into the gelatin hydrogel. Systematic material characterization thus shows that the fabricated hydrogel possessed unique properties such as moderate surface roughness and adhesiveness, suitable pores sizes, temperature-dependent viscoelasticity, and controllable degradability. In vitro studies demonstrated that the as-fabricated hydrogel exhibited excellent cell–material interactions with SW 1353 cells, bone marrow-derived mesenchymal stem cells, and a rat chondrocyte cell line, thereby exhibiting appropriate cytocompatibility for cartilage tissue engineering applications. Furthermore, an in vivo study indicated that the formation of a healthy hyaline cartilage after the microfracture was enhanced by the fabricated hydrogel implant, offering a potential biocompatible platform for microfracture-based cartilage reconstructive surgery.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>31809008</pmid><doi>10.1021/acsami.9b14073</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-1593-4573</orcidid><orcidid>https://orcid.org/0000-0002-6350-6696</orcidid><orcidid>https://orcid.org/0000-0002-6646-7928</orcidid><orcidid>https://orcid.org/0000-0001-8672-9297</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1944-8244 |
ispartof | ACS applied materials & interfaces, 2020-01, Vol.12 (1), p.86-95 |
issn | 1944-8244 1944-8252 |
language | eng |
recordid | cdi_proquest_miscellaneous_2322738586 |
source | American Chemical Society Journals |
title | Microplasma Cross-Linked Graphene Oxide-Gelatin Hydrogel for Cartilage Reconstructive Surgery |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T05%3A11%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microplasma%20Cross-Linked%20Graphene%20Oxide-Gelatin%20Hydrogel%20for%20Cartilage%20Reconstructive%20Surgery&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Satapathy,%20Mantosh%20Kumar&rft.date=2020-01-08&rft.volume=12&rft.issue=1&rft.spage=86&rft.epage=95&rft.pages=86-95&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.9b14073&rft_dat=%3Cproquest_cross%3E2322738586%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2322738586&rft_id=info:pmid/31809008&rfr_iscdi=true |