Tuning Insulator-Semimetal Transitions in 3D Topological Insulator thin Films by Intersurface Hybridization and In-Plane Magnetic Fields

A pair of Dirac points (analogous to a vortex-antivortex pair) associated with opposite topological numbers (with ±π Berry phases) can be merged together through parameter tuning and annihilated to gap the Dirac spectrum, offering a canonical example of a topological phase transition. Here, we repor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2019-11, Vol.123 (20), p.207701-207701, Article 207701
Hauptverfasser: Xu, Yang, Jiang, Guodong, Miotkowski, Ireneusz, Biswas, Rudro R, Chen, Yong P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 207701
container_issue 20
container_start_page 207701
container_title Physical review letters
container_volume 123
creator Xu, Yang
Jiang, Guodong
Miotkowski, Ireneusz
Biswas, Rudro R
Chen, Yong P
description A pair of Dirac points (analogous to a vortex-antivortex pair) associated with opposite topological numbers (with ±π Berry phases) can be merged together through parameter tuning and annihilated to gap the Dirac spectrum, offering a canonical example of a topological phase transition. Here, we report transport studies on thin films of BiSbTeSe_{2}, which is a 3D topological insulator that hosts spin-helical gapless (semimetallic) Dirac fermion surface states for sufficiently thick samples, with an observed resistivity close to h/4e^{2} at the charge neutral point. When the sample thickness is reduced to below ∼10  nm thick, we observe a transition from metallic to insulating behavior, consistent with the expectation that the Dirac cones from the top and bottom surfaces hybridize (analogous to a "merging" in the real space) to give a trivial gapped insulator. Furthermore, we observe that an in-plane magnetic field can drive the system again towards a metallic behavior, with a prominent negative magnetoresistance (up to ∼-95%) and a temperature-insensitive resistivity close to h/2e^{2} at the charge neutral point. The observation is consistent with a predicted effect of an in-plane magnetic field to reduce the hybridization gap (which, if small enough, may be smeared by disorder and give rise to a metallic behavior). A sufficiently strong magnetic field is predicted to restore and split again the Dirac points in the momentum space, inducing a distinct 2D topological semimetal phase with two single-fold Dirac cones of opposite spin-momentum windings.
doi_str_mv 10.1103/physrevlett.123.207701
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2322718271</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2317876984</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-ace0e602d2679a565ea2c7a19332195d2e93adaed359bb5d4c4111ccf143e70b3</originalsourceid><addsrcrecordid>eNpdkc1q3DAQx0VpabZJXyEIeunF2xnJtuxjSZMmsCGh2Z6NLM9uFGR5K8mB7RP0satl0xx6GAbm_8HAj7FzhCUiyC-7x30M9OwopSUKuRSgFOAbtkBQbaEQy7dsASCxaAHUCfsQ4xMAoKib9-xEYgMtNLhgf9azt37Lb3ycnU5TKB5otCMl7fg6aB9tspOP3Houv_H1tJvctLUmq68Jnh6zemXdGHm_z_dEIc5how3x630f7GB_60ML137IcnHvtCd-q7eekjU5SW6IZ-zdRrtIH1_2Kft5dbm-uC5Wd99vLr6uClNClYpcClSDGEStWl3VFWlhlMZWSoFtNQhqpR40DbJq-74aSlMiojEbLCUp6OUp-3zs3YXp10wxdaONhtzhp2mOnZBCKGzyZOun_6xP0xx8_i67UDWqbpsyu-qjy4QpZiabbhfsqMO-Q-gOrLr7zOoHPa8yqy6z6o6scvD8pX7uRxpeY__gyL_bD5TZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2317876984</pqid></control><display><type>article</type><title>Tuning Insulator-Semimetal Transitions in 3D Topological Insulator thin Films by Intersurface Hybridization and In-Plane Magnetic Fields</title><source>American Physical Society Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Xu, Yang ; Jiang, Guodong ; Miotkowski, Ireneusz ; Biswas, Rudro R ; Chen, Yong P</creator><creatorcontrib>Xu, Yang ; Jiang, Guodong ; Miotkowski, Ireneusz ; Biswas, Rudro R ; Chen, Yong P</creatorcontrib><description>A pair of Dirac points (analogous to a vortex-antivortex pair) associated with opposite topological numbers (with ±π Berry phases) can be merged together through parameter tuning and annihilated to gap the Dirac spectrum, offering a canonical example of a topological phase transition. Here, we report transport studies on thin films of BiSbTeSe_{2}, which is a 3D topological insulator that hosts spin-helical gapless (semimetallic) Dirac fermion surface states for sufficiently thick samples, with an observed resistivity close to h/4e^{2} at the charge neutral point. When the sample thickness is reduced to below ∼10  nm thick, we observe a transition from metallic to insulating behavior, consistent with the expectation that the Dirac cones from the top and bottom surfaces hybridize (analogous to a "merging" in the real space) to give a trivial gapped insulator. Furthermore, we observe that an in-plane magnetic field can drive the system again towards a metallic behavior, with a prominent negative magnetoresistance (up to ∼-95%) and a temperature-insensitive resistivity close to h/2e^{2} at the charge neutral point. The observation is consistent with a predicted effect of an in-plane magnetic field to reduce the hybridization gap (which, if small enough, may be smeared by disorder and give rise to a metallic behavior). A sufficiently strong magnetic field is predicted to restore and split again the Dirac points in the momentum space, inducing a distinct 2D topological semimetal phase with two single-fold Dirac cones of opposite spin-momentum windings.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/physrevlett.123.207701</identifier><identifier>PMID: 31809081</identifier><language>eng</language><publisher>United States: American Physical Society</publisher><subject>Coils (windings) ; Cones ; Electrical resistivity ; Fermions ; Magnetic fields ; Magnetoresistance ; Magnetoresistivity ; Momentum ; Phase transitions ; Thin films ; Topological insulators ; Tuning</subject><ispartof>Physical review letters, 2019-11, Vol.123 (20), p.207701-207701, Article 207701</ispartof><rights>Copyright American Physical Society Nov 15, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c405t-ace0e602d2679a565ea2c7a19332195d2e93adaed359bb5d4c4111ccf143e70b3</citedby><cites>FETCH-LOGICAL-c405t-ace0e602d2679a565ea2c7a19332195d2e93adaed359bb5d4c4111ccf143e70b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,2877,2878,27929,27930</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31809081$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xu, Yang</creatorcontrib><creatorcontrib>Jiang, Guodong</creatorcontrib><creatorcontrib>Miotkowski, Ireneusz</creatorcontrib><creatorcontrib>Biswas, Rudro R</creatorcontrib><creatorcontrib>Chen, Yong P</creatorcontrib><title>Tuning Insulator-Semimetal Transitions in 3D Topological Insulator thin Films by Intersurface Hybridization and In-Plane Magnetic Fields</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>A pair of Dirac points (analogous to a vortex-antivortex pair) associated with opposite topological numbers (with ±π Berry phases) can be merged together through parameter tuning and annihilated to gap the Dirac spectrum, offering a canonical example of a topological phase transition. Here, we report transport studies on thin films of BiSbTeSe_{2}, which is a 3D topological insulator that hosts spin-helical gapless (semimetallic) Dirac fermion surface states for sufficiently thick samples, with an observed resistivity close to h/4e^{2} at the charge neutral point. When the sample thickness is reduced to below ∼10  nm thick, we observe a transition from metallic to insulating behavior, consistent with the expectation that the Dirac cones from the top and bottom surfaces hybridize (analogous to a "merging" in the real space) to give a trivial gapped insulator. Furthermore, we observe that an in-plane magnetic field can drive the system again towards a metallic behavior, with a prominent negative magnetoresistance (up to ∼-95%) and a temperature-insensitive resistivity close to h/2e^{2} at the charge neutral point. The observation is consistent with a predicted effect of an in-plane magnetic field to reduce the hybridization gap (which, if small enough, may be smeared by disorder and give rise to a metallic behavior). A sufficiently strong magnetic field is predicted to restore and split again the Dirac points in the momentum space, inducing a distinct 2D topological semimetal phase with two single-fold Dirac cones of opposite spin-momentum windings.</description><subject>Coils (windings)</subject><subject>Cones</subject><subject>Electrical resistivity</subject><subject>Fermions</subject><subject>Magnetic fields</subject><subject>Magnetoresistance</subject><subject>Magnetoresistivity</subject><subject>Momentum</subject><subject>Phase transitions</subject><subject>Thin films</subject><subject>Topological insulators</subject><subject>Tuning</subject><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpdkc1q3DAQx0VpabZJXyEIeunF2xnJtuxjSZMmsCGh2Z6NLM9uFGR5K8mB7RP0satl0xx6GAbm_8HAj7FzhCUiyC-7x30M9OwopSUKuRSgFOAbtkBQbaEQy7dsASCxaAHUCfsQ4xMAoKib9-xEYgMtNLhgf9azt37Lb3ycnU5TKB5otCMl7fg6aB9tspOP3Houv_H1tJvctLUmq68Jnh6zemXdGHm_z_dEIc5how3x630f7GB_60ML137IcnHvtCd-q7eekjU5SW6IZ-zdRrtIH1_2Kft5dbm-uC5Wd99vLr6uClNClYpcClSDGEStWl3VFWlhlMZWSoFtNQhqpR40DbJq-74aSlMiojEbLCUp6OUp-3zs3YXp10wxdaONhtzhp2mOnZBCKGzyZOun_6xP0xx8_i67UDWqbpsyu-qjy4QpZiabbhfsqMO-Q-gOrLr7zOoHPa8yqy6z6o6scvD8pX7uRxpeY__gyL_bD5TZ</recordid><startdate>20191115</startdate><enddate>20191115</enddate><creator>Xu, Yang</creator><creator>Jiang, Guodong</creator><creator>Miotkowski, Ireneusz</creator><creator>Biswas, Rudro R</creator><creator>Chen, Yong P</creator><general>American Physical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20191115</creationdate><title>Tuning Insulator-Semimetal Transitions in 3D Topological Insulator thin Films by Intersurface Hybridization and In-Plane Magnetic Fields</title><author>Xu, Yang ; Jiang, Guodong ; Miotkowski, Ireneusz ; Biswas, Rudro R ; Chen, Yong P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-ace0e602d2679a565ea2c7a19332195d2e93adaed359bb5d4c4111ccf143e70b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Coils (windings)</topic><topic>Cones</topic><topic>Electrical resistivity</topic><topic>Fermions</topic><topic>Magnetic fields</topic><topic>Magnetoresistance</topic><topic>Magnetoresistivity</topic><topic>Momentum</topic><topic>Phase transitions</topic><topic>Thin films</topic><topic>Topological insulators</topic><topic>Tuning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Yang</creatorcontrib><creatorcontrib>Jiang, Guodong</creatorcontrib><creatorcontrib>Miotkowski, Ireneusz</creatorcontrib><creatorcontrib>Biswas, Rudro R</creatorcontrib><creatorcontrib>Chen, Yong P</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Yang</au><au>Jiang, Guodong</au><au>Miotkowski, Ireneusz</au><au>Biswas, Rudro R</au><au>Chen, Yong P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tuning Insulator-Semimetal Transitions in 3D Topological Insulator thin Films by Intersurface Hybridization and In-Plane Magnetic Fields</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2019-11-15</date><risdate>2019</risdate><volume>123</volume><issue>20</issue><spage>207701</spage><epage>207701</epage><pages>207701-207701</pages><artnum>207701</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>A pair of Dirac points (analogous to a vortex-antivortex pair) associated with opposite topological numbers (with ±π Berry phases) can be merged together through parameter tuning and annihilated to gap the Dirac spectrum, offering a canonical example of a topological phase transition. Here, we report transport studies on thin films of BiSbTeSe_{2}, which is a 3D topological insulator that hosts spin-helical gapless (semimetallic) Dirac fermion surface states for sufficiently thick samples, with an observed resistivity close to h/4e^{2} at the charge neutral point. When the sample thickness is reduced to below ∼10  nm thick, we observe a transition from metallic to insulating behavior, consistent with the expectation that the Dirac cones from the top and bottom surfaces hybridize (analogous to a "merging" in the real space) to give a trivial gapped insulator. Furthermore, we observe that an in-plane magnetic field can drive the system again towards a metallic behavior, with a prominent negative magnetoresistance (up to ∼-95%) and a temperature-insensitive resistivity close to h/2e^{2} at the charge neutral point. The observation is consistent with a predicted effect of an in-plane magnetic field to reduce the hybridization gap (which, if small enough, may be smeared by disorder and give rise to a metallic behavior). A sufficiently strong magnetic field is predicted to restore and split again the Dirac points in the momentum space, inducing a distinct 2D topological semimetal phase with two single-fold Dirac cones of opposite spin-momentum windings.</abstract><cop>United States</cop><pub>American Physical Society</pub><pmid>31809081</pmid><doi>10.1103/physrevlett.123.207701</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0031-9007
ispartof Physical review letters, 2019-11, Vol.123 (20), p.207701-207701, Article 207701
issn 0031-9007
1079-7114
language eng
recordid cdi_proquest_miscellaneous_2322718271
source American Physical Society Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Coils (windings)
Cones
Electrical resistivity
Fermions
Magnetic fields
Magnetoresistance
Magnetoresistivity
Momentum
Phase transitions
Thin films
Topological insulators
Tuning
title Tuning Insulator-Semimetal Transitions in 3D Topological Insulator thin Films by Intersurface Hybridization and In-Plane Magnetic Fields
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T18%3A27%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tuning%20Insulator-Semimetal%20Transitions%20in%203D%20Topological%20Insulator%20thin%20Films%20by%20Intersurface%20Hybridization%20and%20In-Plane%20Magnetic%20Fields&rft.jtitle=Physical%20review%20letters&rft.au=Xu,%20Yang&rft.date=2019-11-15&rft.volume=123&rft.issue=20&rft.spage=207701&rft.epage=207701&rft.pages=207701-207701&rft.artnum=207701&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/physrevlett.123.207701&rft_dat=%3Cproquest_cross%3E2317876984%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2317876984&rft_id=info:pmid/31809081&rfr_iscdi=true