On the Influence of Oxygen on the Degradation of Fe‐N‐C Catalysts

Fe‐N‐C catalysts containing atomic FeNx sites are promising candidates as precious‐metal‐free catalysts for oxygen reduction reaction (ORR) in proton exchange membrane fuel cells. The durability of Fe‐N‐C catalysts in fuel cells has been extensively studied using accelerated stress tests (AST). Here...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie International Edition 2020-02, Vol.59 (8), p.3235-3243
Hauptverfasser: Kumar, Kavita, Dubau, Laetitia, Mermoux, Michel, Li, Jingkun, Zitolo, Andrea, Nelayah, Jaysen, Jaouen, Frédéric, Maillard, Frédéric
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3243
container_issue 8
container_start_page 3235
container_title Angewandte Chemie International Edition
container_volume 59
creator Kumar, Kavita
Dubau, Laetitia
Mermoux, Michel
Li, Jingkun
Zitolo, Andrea
Nelayah, Jaysen
Jaouen, Frédéric
Maillard, Frédéric
description Fe‐N‐C catalysts containing atomic FeNx sites are promising candidates as precious‐metal‐free catalysts for oxygen reduction reaction (ORR) in proton exchange membrane fuel cells. The durability of Fe‐N‐C catalysts in fuel cells has been extensively studied using accelerated stress tests (AST). Herein we reveal stronger degradation of the Fe‐N‐C structure and four‐times higher ORR activity loss when performing load cycling AST in O2‐ vs. Ar‐saturated pH 1 electrolyte. Raman spectroscopy results show carbon corrosion after AST in O2, even when cycling at low potentials, while no corrosion occurred after any load cycling AST in Ar. The load‐cycling AST in O2 leads to loss of a significant fraction of FeNx sites, as shown by energy dispersive X‐ray spectroscopy analyses, and to the formation of Fe oxides. The results support that the unexpected carbon corrosion occurring at such low potential in the presence of O2 is due to reactive oxygen species produced between H2O2 and Fe sites via Fenton reactions. This corrosion: The stability of Fe‐N‐C electrocatalysts in fuel cells is often studied with accelerated stress tests (ASTs). A new AST performed in O2 not Ar shows reactive oxygen species (ROS) are produced from H2O2 (from the oxygen reduction reaction) and FeNx sites. They cause carbon corrosion and the loss of catalytic FeNx sites, which are transformed into Fe oxides.
doi_str_mv 10.1002/anie.201912451
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2321668710</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2352576445</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4101-c0dc3e8aeb12ab43b2fed6e6fe814f7fff13c8fe35b6e6dd0be3f47ea3e293183</originalsourceid><addsrcrecordid>eNqFkL9OwzAQxi0EoqWwMqJILCwpPjuJnbEKLVRC7QJz5CTnkipNSpwIsvEIPCNPgquUIrEwnO7f7z6dPkIugY6BUnaryhzHjEIIzPPhiAzBZ-ByIfixrT3OXSF9GJAzY9aWl5IGp2TAQYShpHRIpsvSaV7QmZe6aLFM0am0s3zvVlg6Vb-6w1WtMtXktrfLGX59fC5sRE6kGlV0pjHn5ESrwuDFPo_I82z6FD24j8v7eTR5dFMPKLgpzVKOUmECTCUeT5jGLMBAowRPC6018FRq5H5ip1lGE-TaE6g4spCD5CNy0-tu6-q1RdPEm9ykWBSqxKo1MeMMgkAKoBa9_oOuq7Yu7XeW8pkvAs_zLTXuqbSujKlRx9s636i6i4HGO4PjncHxwWB7cLWXbZMNZgf8x1ELhD3wlhfY_SMXTxbz6a_4N56OiAo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2352576445</pqid></control><display><type>article</type><title>On the Influence of Oxygen on the Degradation of Fe‐N‐C Catalysts</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Kumar, Kavita ; Dubau, Laetitia ; Mermoux, Michel ; Li, Jingkun ; Zitolo, Andrea ; Nelayah, Jaysen ; Jaouen, Frédéric ; Maillard, Frédéric</creator><creatorcontrib>Kumar, Kavita ; Dubau, Laetitia ; Mermoux, Michel ; Li, Jingkun ; Zitolo, Andrea ; Nelayah, Jaysen ; Jaouen, Frédéric ; Maillard, Frédéric</creatorcontrib><description>Fe‐N‐C catalysts containing atomic FeNx sites are promising candidates as precious‐metal‐free catalysts for oxygen reduction reaction (ORR) in proton exchange membrane fuel cells. The durability of Fe‐N‐C catalysts in fuel cells has been extensively studied using accelerated stress tests (AST). Herein we reveal stronger degradation of the Fe‐N‐C structure and four‐times higher ORR activity loss when performing load cycling AST in O2‐ vs. Ar‐saturated pH 1 electrolyte. Raman spectroscopy results show carbon corrosion after AST in O2, even when cycling at low potentials, while no corrosion occurred after any load cycling AST in Ar. The load‐cycling AST in O2 leads to loss of a significant fraction of FeNx sites, as shown by energy dispersive X‐ray spectroscopy analyses, and to the formation of Fe oxides. The results support that the unexpected carbon corrosion occurring at such low potential in the presence of O2 is due to reactive oxygen species produced between H2O2 and Fe sites via Fenton reactions. This corrosion: The stability of Fe‐N‐C electrocatalysts in fuel cells is often studied with accelerated stress tests (ASTs). A new AST performed in O2 not Ar shows reactive oxygen species (ROS) are produced from H2O2 (from the oxygen reduction reaction) and FeNx sites. They cause carbon corrosion and the loss of catalytic FeNx sites, which are transformed into Fe oxides.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.201912451</identifier><identifier>PMID: 31799800</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Accelerated tests ; Carbon ; carbon corrosion ; Catalysts ; Chemical reduction ; Corrosion ; Cycles ; Degradation ; Electrolytic cells ; Fe-N-C Catalysts ; Fuel cells ; Fuel technology ; Hydrogen peroxide ; Oxides ; Oxygen ; oxygen reduction reaction ; Oxygen reduction reactions ; polymer electrolyte membrane fuel cells ; Proton exchange membrane fuel cells ; Raman spectroscopy ; Reactive oxygen species ; reactive oxygen species (ROS) ; Spectroscopy ; Spectrum analysis</subject><ispartof>Angewandte Chemie International Edition, 2020-02, Vol.59 (8), p.3235-3243</ispartof><rights>2019 Wiley‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2019 Wiley-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><rights>2020 Wiley‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4101-c0dc3e8aeb12ab43b2fed6e6fe814f7fff13c8fe35b6e6dd0be3f47ea3e293183</citedby><cites>FETCH-LOGICAL-c4101-c0dc3e8aeb12ab43b2fed6e6fe814f7fff13c8fe35b6e6dd0be3f47ea3e293183</cites><orcidid>0000-0002-0108-2197 ; 0000-0002-6470-8900 ; 0000-0001-7349-7394 ; 0000-0002-2187-6699 ; 0000-0001-9520-1435 ; 0000-0001-9836-3261</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.201912451$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.201912451$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31799800$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kumar, Kavita</creatorcontrib><creatorcontrib>Dubau, Laetitia</creatorcontrib><creatorcontrib>Mermoux, Michel</creatorcontrib><creatorcontrib>Li, Jingkun</creatorcontrib><creatorcontrib>Zitolo, Andrea</creatorcontrib><creatorcontrib>Nelayah, Jaysen</creatorcontrib><creatorcontrib>Jaouen, Frédéric</creatorcontrib><creatorcontrib>Maillard, Frédéric</creatorcontrib><title>On the Influence of Oxygen on the Degradation of Fe‐N‐C Catalysts</title><title>Angewandte Chemie International Edition</title><addtitle>Angew Chem Int Ed Engl</addtitle><description>Fe‐N‐C catalysts containing atomic FeNx sites are promising candidates as precious‐metal‐free catalysts for oxygen reduction reaction (ORR) in proton exchange membrane fuel cells. The durability of Fe‐N‐C catalysts in fuel cells has been extensively studied using accelerated stress tests (AST). Herein we reveal stronger degradation of the Fe‐N‐C structure and four‐times higher ORR activity loss when performing load cycling AST in O2‐ vs. Ar‐saturated pH 1 electrolyte. Raman spectroscopy results show carbon corrosion after AST in O2, even when cycling at low potentials, while no corrosion occurred after any load cycling AST in Ar. The load‐cycling AST in O2 leads to loss of a significant fraction of FeNx sites, as shown by energy dispersive X‐ray spectroscopy analyses, and to the formation of Fe oxides. The results support that the unexpected carbon corrosion occurring at such low potential in the presence of O2 is due to reactive oxygen species produced between H2O2 and Fe sites via Fenton reactions. This corrosion: The stability of Fe‐N‐C electrocatalysts in fuel cells is often studied with accelerated stress tests (ASTs). A new AST performed in O2 not Ar shows reactive oxygen species (ROS) are produced from H2O2 (from the oxygen reduction reaction) and FeNx sites. They cause carbon corrosion and the loss of catalytic FeNx sites, which are transformed into Fe oxides.</description><subject>Accelerated tests</subject><subject>Carbon</subject><subject>carbon corrosion</subject><subject>Catalysts</subject><subject>Chemical reduction</subject><subject>Corrosion</subject><subject>Cycles</subject><subject>Degradation</subject><subject>Electrolytic cells</subject><subject>Fe-N-C Catalysts</subject><subject>Fuel cells</subject><subject>Fuel technology</subject><subject>Hydrogen peroxide</subject><subject>Oxides</subject><subject>Oxygen</subject><subject>oxygen reduction reaction</subject><subject>Oxygen reduction reactions</subject><subject>polymer electrolyte membrane fuel cells</subject><subject>Proton exchange membrane fuel cells</subject><subject>Raman spectroscopy</subject><subject>Reactive oxygen species</subject><subject>reactive oxygen species (ROS)</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkL9OwzAQxi0EoqWwMqJILCwpPjuJnbEKLVRC7QJz5CTnkipNSpwIsvEIPCNPgquUIrEwnO7f7z6dPkIugY6BUnaryhzHjEIIzPPhiAzBZ-ByIfixrT3OXSF9GJAzY9aWl5IGp2TAQYShpHRIpsvSaV7QmZe6aLFM0am0s3zvVlg6Vb-6w1WtMtXktrfLGX59fC5sRE6kGlV0pjHn5ESrwuDFPo_I82z6FD24j8v7eTR5dFMPKLgpzVKOUmECTCUeT5jGLMBAowRPC6018FRq5H5ip1lGE-TaE6g4spCD5CNy0-tu6-q1RdPEm9ykWBSqxKo1MeMMgkAKoBa9_oOuq7Yu7XeW8pkvAs_zLTXuqbSujKlRx9s636i6i4HGO4PjncHxwWB7cLWXbZMNZgf8x1ELhD3wlhfY_SMXTxbz6a_4N56OiAo</recordid><startdate>20200217</startdate><enddate>20200217</enddate><creator>Kumar, Kavita</creator><creator>Dubau, Laetitia</creator><creator>Mermoux, Michel</creator><creator>Li, Jingkun</creator><creator>Zitolo, Andrea</creator><creator>Nelayah, Jaysen</creator><creator>Jaouen, Frédéric</creator><creator>Maillard, Frédéric</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0108-2197</orcidid><orcidid>https://orcid.org/0000-0002-6470-8900</orcidid><orcidid>https://orcid.org/0000-0001-7349-7394</orcidid><orcidid>https://orcid.org/0000-0002-2187-6699</orcidid><orcidid>https://orcid.org/0000-0001-9520-1435</orcidid><orcidid>https://orcid.org/0000-0001-9836-3261</orcidid></search><sort><creationdate>20200217</creationdate><title>On the Influence of Oxygen on the Degradation of Fe‐N‐C Catalysts</title><author>Kumar, Kavita ; Dubau, Laetitia ; Mermoux, Michel ; Li, Jingkun ; Zitolo, Andrea ; Nelayah, Jaysen ; Jaouen, Frédéric ; Maillard, Frédéric</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4101-c0dc3e8aeb12ab43b2fed6e6fe814f7fff13c8fe35b6e6dd0be3f47ea3e293183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accelerated tests</topic><topic>Carbon</topic><topic>carbon corrosion</topic><topic>Catalysts</topic><topic>Chemical reduction</topic><topic>Corrosion</topic><topic>Cycles</topic><topic>Degradation</topic><topic>Electrolytic cells</topic><topic>Fe-N-C Catalysts</topic><topic>Fuel cells</topic><topic>Fuel technology</topic><topic>Hydrogen peroxide</topic><topic>Oxides</topic><topic>Oxygen</topic><topic>oxygen reduction reaction</topic><topic>Oxygen reduction reactions</topic><topic>polymer electrolyte membrane fuel cells</topic><topic>Proton exchange membrane fuel cells</topic><topic>Raman spectroscopy</topic><topic>Reactive oxygen species</topic><topic>reactive oxygen species (ROS)</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumar, Kavita</creatorcontrib><creatorcontrib>Dubau, Laetitia</creatorcontrib><creatorcontrib>Mermoux, Michel</creatorcontrib><creatorcontrib>Li, Jingkun</creatorcontrib><creatorcontrib>Zitolo, Andrea</creatorcontrib><creatorcontrib>Nelayah, Jaysen</creatorcontrib><creatorcontrib>Jaouen, Frédéric</creatorcontrib><creatorcontrib>Maillard, Frédéric</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumar, Kavita</au><au>Dubau, Laetitia</au><au>Mermoux, Michel</au><au>Li, Jingkun</au><au>Zitolo, Andrea</au><au>Nelayah, Jaysen</au><au>Jaouen, Frédéric</au><au>Maillard, Frédéric</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Influence of Oxygen on the Degradation of Fe‐N‐C Catalysts</atitle><jtitle>Angewandte Chemie International Edition</jtitle><addtitle>Angew Chem Int Ed Engl</addtitle><date>2020-02-17</date><risdate>2020</risdate><volume>59</volume><issue>8</issue><spage>3235</spage><epage>3243</epage><pages>3235-3243</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>Fe‐N‐C catalysts containing atomic FeNx sites are promising candidates as precious‐metal‐free catalysts for oxygen reduction reaction (ORR) in proton exchange membrane fuel cells. The durability of Fe‐N‐C catalysts in fuel cells has been extensively studied using accelerated stress tests (AST). Herein we reveal stronger degradation of the Fe‐N‐C structure and four‐times higher ORR activity loss when performing load cycling AST in O2‐ vs. Ar‐saturated pH 1 electrolyte. Raman spectroscopy results show carbon corrosion after AST in O2, even when cycling at low potentials, while no corrosion occurred after any load cycling AST in Ar. The load‐cycling AST in O2 leads to loss of a significant fraction of FeNx sites, as shown by energy dispersive X‐ray spectroscopy analyses, and to the formation of Fe oxides. The results support that the unexpected carbon corrosion occurring at such low potential in the presence of O2 is due to reactive oxygen species produced between H2O2 and Fe sites via Fenton reactions. This corrosion: The stability of Fe‐N‐C electrocatalysts in fuel cells is often studied with accelerated stress tests (ASTs). A new AST performed in O2 not Ar shows reactive oxygen species (ROS) are produced from H2O2 (from the oxygen reduction reaction) and FeNx sites. They cause carbon corrosion and the loss of catalytic FeNx sites, which are transformed into Fe oxides.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>31799800</pmid><doi>10.1002/anie.201912451</doi><tpages>9</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0002-0108-2197</orcidid><orcidid>https://orcid.org/0000-0002-6470-8900</orcidid><orcidid>https://orcid.org/0000-0001-7349-7394</orcidid><orcidid>https://orcid.org/0000-0002-2187-6699</orcidid><orcidid>https://orcid.org/0000-0001-9520-1435</orcidid><orcidid>https://orcid.org/0000-0001-9836-3261</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1433-7851
ispartof Angewandte Chemie International Edition, 2020-02, Vol.59 (8), p.3235-3243
issn 1433-7851
1521-3773
language eng
recordid cdi_proquest_miscellaneous_2321668710
source Wiley Online Library Journals Frontfile Complete
subjects Accelerated tests
Carbon
carbon corrosion
Catalysts
Chemical reduction
Corrosion
Cycles
Degradation
Electrolytic cells
Fe-N-C Catalysts
Fuel cells
Fuel technology
Hydrogen peroxide
Oxides
Oxygen
oxygen reduction reaction
Oxygen reduction reactions
polymer electrolyte membrane fuel cells
Proton exchange membrane fuel cells
Raman spectroscopy
Reactive oxygen species
reactive oxygen species (ROS)
Spectroscopy
Spectrum analysis
title On the Influence of Oxygen on the Degradation of Fe‐N‐C Catalysts
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T08%3A58%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Influence%20of%20Oxygen%20on%20the%20Degradation%20of%20Fe%E2%80%90N%E2%80%90C%20Catalysts&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Kumar,%20Kavita&rft.date=2020-02-17&rft.volume=59&rft.issue=8&rft.spage=3235&rft.epage=3243&rft.pages=3235-3243&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.201912451&rft_dat=%3Cproquest_cross%3E2352576445%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2352576445&rft_id=info:pmid/31799800&rfr_iscdi=true