Suppression of Interfacial Disorders in Solution-Processed Metal Oxide Thin-Film Transistors by Mg Doping

The fabrication of high-performance metal oxide thin-film transistors (TFTs) using a low-temperature solution process may facilitate the realization of ultraflexible and wearable electronic devices. However, the development of highly stable oxide gate dielectrics at a low temperature has been a chal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2019-12, Vol.11 (51), p.48054-48061
Hauptverfasser: Heo, Jae Sang, Jeon, Seong-Pil, Kim, Insoo, Lee, Woobin, Kim, Yong-Hoon, Park, Sung Kyu
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 48061
container_issue 51
container_start_page 48054
container_title ACS applied materials & interfaces
container_volume 11
creator Heo, Jae Sang
Jeon, Seong-Pil
Kim, Insoo
Lee, Woobin
Kim, Yong-Hoon
Park, Sung Kyu
description The fabrication of high-performance metal oxide thin-film transistors (TFTs) using a low-temperature solution process may facilitate the realization of ultraflexible and wearable electronic devices. However, the development of highly stable oxide gate dielectrics at a low temperature has been a challenging issue since a considerable amount of residual impurities and defective bonding states is present in low-temperature-processed gate dielectrics causing a large counterclockwise hysteresis and a significant instability. Here, we report a new approach to effectively remove the residual impurities and suppress the relevant dipole disorder in a low-temperature-processed (180 °C) AlO x gate dielectric layer by magnesium (Mg) doping. Mg is well known as a promising material for suppression of oxygen vacancy defects and improvement of operational stability due to a high oxygen vacancy formation energy (E vo = 9.8 eV) and a low standard reduction potential (E 0 = −2.38 V). Therefore, with an adequate control of Mg concentration in metal oxide (MO) films, oxygen-related defects could be easily suppressed without additional treatments and then stable metal–oxygen–metal (M–O–M) network formation could be achieved, causing excellent operational stability. By optimal Mg doping (10%) in the InO x channel layer, Mg:InO x TFTs exhibited negligible clockwise hysteresis and a field-effect mobility of >4 cm2 V–1 s–1. Furthermore, the electric characteristics of the low-temperature-processed AlO x gate dielectric with high impurities were improved by Mg diffusion originating in Mg doping, resulting in stable threshold voltage shift in the bias stability test.
doi_str_mv 10.1021/acsami.9b17642
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2320875683</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2320875683</sourcerecordid><originalsourceid>FETCH-LOGICAL-a330t-e86b693679dfa25e273d156d05658173446899e2ff55085c6d7b3f1600eab8d3</originalsourceid><addsrcrecordid>eNp1kM9LwzAYhoMobk6vHiVHETrzo0nbo2xOBxsTtntJm3RmtElNWnD_vZHO3Tx97-F5X_geAO4xmmJE8LMovWj0NCtwwmNyAcY4i-MoJYxcnnMcj8CN9weEOCWIXYMRxUmGMc7GQG_7tnXKe20NtBVcmk65SpRa1HCuvXVSOQ-1gVtb912Aog9ny8ArCdeqC9TmW0sFd5_aRAtdN3DnhPHadzb0iiNc7-Hcttrsb8FVJWqv7k53AnaL193sPVpt3pazl1UkKEVdpFJe8IzyJJOVIEyRhErMuESMsxQnNI55mmWKVBVjKGUll0lBK8wRUqJIJZ2Ax2G2dfarV77LG-1LVdfCKNv7nAQFacJ4SgM6HdDSWe-dqvLW6Ua4Y45R_ms3H-zmJ7uh8HDa7otGyTP-pzMATwMQivnB9s6ET_9b-wEeIYS7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2320875683</pqid></control><display><type>article</type><title>Suppression of Interfacial Disorders in Solution-Processed Metal Oxide Thin-Film Transistors by Mg Doping</title><source>American Chemical Society Journals</source><creator>Heo, Jae Sang ; Jeon, Seong-Pil ; Kim, Insoo ; Lee, Woobin ; Kim, Yong-Hoon ; Park, Sung Kyu</creator><creatorcontrib>Heo, Jae Sang ; Jeon, Seong-Pil ; Kim, Insoo ; Lee, Woobin ; Kim, Yong-Hoon ; Park, Sung Kyu</creatorcontrib><description>The fabrication of high-performance metal oxide thin-film transistors (TFTs) using a low-temperature solution process may facilitate the realization of ultraflexible and wearable electronic devices. However, the development of highly stable oxide gate dielectrics at a low temperature has been a challenging issue since a considerable amount of residual impurities and defective bonding states is present in low-temperature-processed gate dielectrics causing a large counterclockwise hysteresis and a significant instability. Here, we report a new approach to effectively remove the residual impurities and suppress the relevant dipole disorder in a low-temperature-processed (180 °C) AlO x gate dielectric layer by magnesium (Mg) doping. Mg is well known as a promising material for suppression of oxygen vacancy defects and improvement of operational stability due to a high oxygen vacancy formation energy (E vo = 9.8 eV) and a low standard reduction potential (E 0 = −2.38 V). Therefore, with an adequate control of Mg concentration in metal oxide (MO) films, oxygen-related defects could be easily suppressed without additional treatments and then stable metal–oxygen–metal (M–O–M) network formation could be achieved, causing excellent operational stability. By optimal Mg doping (10%) in the InO x channel layer, Mg:InO x TFTs exhibited negligible clockwise hysteresis and a field-effect mobility of &gt;4 cm2 V–1 s–1. Furthermore, the electric characteristics of the low-temperature-processed AlO x gate dielectric with high impurities were improved by Mg diffusion originating in Mg doping, resulting in stable threshold voltage shift in the bias stability test.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.9b17642</identifier><identifier>PMID: 31791119</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS applied materials &amp; interfaces, 2019-12, Vol.11 (51), p.48054-48061</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a330t-e86b693679dfa25e273d156d05658173446899e2ff55085c6d7b3f1600eab8d3</citedby><cites>FETCH-LOGICAL-a330t-e86b693679dfa25e273d156d05658173446899e2ff55085c6d7b3f1600eab8d3</cites><orcidid>0000-0003-0057-1893 ; 0000-0002-5607-3327 ; 0000-0001-9617-2541</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.9b17642$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.9b17642$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31791119$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Heo, Jae Sang</creatorcontrib><creatorcontrib>Jeon, Seong-Pil</creatorcontrib><creatorcontrib>Kim, Insoo</creatorcontrib><creatorcontrib>Lee, Woobin</creatorcontrib><creatorcontrib>Kim, Yong-Hoon</creatorcontrib><creatorcontrib>Park, Sung Kyu</creatorcontrib><title>Suppression of Interfacial Disorders in Solution-Processed Metal Oxide Thin-Film Transistors by Mg Doping</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>The fabrication of high-performance metal oxide thin-film transistors (TFTs) using a low-temperature solution process may facilitate the realization of ultraflexible and wearable electronic devices. However, the development of highly stable oxide gate dielectrics at a low temperature has been a challenging issue since a considerable amount of residual impurities and defective bonding states is present in low-temperature-processed gate dielectrics causing a large counterclockwise hysteresis and a significant instability. Here, we report a new approach to effectively remove the residual impurities and suppress the relevant dipole disorder in a low-temperature-processed (180 °C) AlO x gate dielectric layer by magnesium (Mg) doping. Mg is well known as a promising material for suppression of oxygen vacancy defects and improvement of operational stability due to a high oxygen vacancy formation energy (E vo = 9.8 eV) and a low standard reduction potential (E 0 = −2.38 V). Therefore, with an adequate control of Mg concentration in metal oxide (MO) films, oxygen-related defects could be easily suppressed without additional treatments and then stable metal–oxygen–metal (M–O–M) network formation could be achieved, causing excellent operational stability. By optimal Mg doping (10%) in the InO x channel layer, Mg:InO x TFTs exhibited negligible clockwise hysteresis and a field-effect mobility of &gt;4 cm2 V–1 s–1. Furthermore, the electric characteristics of the low-temperature-processed AlO x gate dielectric with high impurities were improved by Mg diffusion originating in Mg doping, resulting in stable threshold voltage shift in the bias stability test.</description><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kM9LwzAYhoMobk6vHiVHETrzo0nbo2xOBxsTtntJm3RmtElNWnD_vZHO3Tx97-F5X_geAO4xmmJE8LMovWj0NCtwwmNyAcY4i-MoJYxcnnMcj8CN9weEOCWIXYMRxUmGMc7GQG_7tnXKe20NtBVcmk65SpRa1HCuvXVSOQ-1gVtb912Aog9ny8ArCdeqC9TmW0sFd5_aRAtdN3DnhPHadzb0iiNc7-Hcttrsb8FVJWqv7k53AnaL193sPVpt3pazl1UkKEVdpFJe8IzyJJOVIEyRhErMuESMsxQnNI55mmWKVBVjKGUll0lBK8wRUqJIJZ2Ax2G2dfarV77LG-1LVdfCKNv7nAQFacJ4SgM6HdDSWe-dqvLW6Ua4Y45R_ms3H-zmJ7uh8HDa7otGyTP-pzMATwMQivnB9s6ET_9b-wEeIYS7</recordid><startdate>20191226</startdate><enddate>20191226</enddate><creator>Heo, Jae Sang</creator><creator>Jeon, Seong-Pil</creator><creator>Kim, Insoo</creator><creator>Lee, Woobin</creator><creator>Kim, Yong-Hoon</creator><creator>Park, Sung Kyu</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0057-1893</orcidid><orcidid>https://orcid.org/0000-0002-5607-3327</orcidid><orcidid>https://orcid.org/0000-0001-9617-2541</orcidid></search><sort><creationdate>20191226</creationdate><title>Suppression of Interfacial Disorders in Solution-Processed Metal Oxide Thin-Film Transistors by Mg Doping</title><author>Heo, Jae Sang ; Jeon, Seong-Pil ; Kim, Insoo ; Lee, Woobin ; Kim, Yong-Hoon ; Park, Sung Kyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a330t-e86b693679dfa25e273d156d05658173446899e2ff55085c6d7b3f1600eab8d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Heo, Jae Sang</creatorcontrib><creatorcontrib>Jeon, Seong-Pil</creatorcontrib><creatorcontrib>Kim, Insoo</creatorcontrib><creatorcontrib>Lee, Woobin</creatorcontrib><creatorcontrib>Kim, Yong-Hoon</creatorcontrib><creatorcontrib>Park, Sung Kyu</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Heo, Jae Sang</au><au>Jeon, Seong-Pil</au><au>Kim, Insoo</au><au>Lee, Woobin</au><au>Kim, Yong-Hoon</au><au>Park, Sung Kyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Suppression of Interfacial Disorders in Solution-Processed Metal Oxide Thin-Film Transistors by Mg Doping</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2019-12-26</date><risdate>2019</risdate><volume>11</volume><issue>51</issue><spage>48054</spage><epage>48061</epage><pages>48054-48061</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>The fabrication of high-performance metal oxide thin-film transistors (TFTs) using a low-temperature solution process may facilitate the realization of ultraflexible and wearable electronic devices. However, the development of highly stable oxide gate dielectrics at a low temperature has been a challenging issue since a considerable amount of residual impurities and defective bonding states is present in low-temperature-processed gate dielectrics causing a large counterclockwise hysteresis and a significant instability. Here, we report a new approach to effectively remove the residual impurities and suppress the relevant dipole disorder in a low-temperature-processed (180 °C) AlO x gate dielectric layer by magnesium (Mg) doping. Mg is well known as a promising material for suppression of oxygen vacancy defects and improvement of operational stability due to a high oxygen vacancy formation energy (E vo = 9.8 eV) and a low standard reduction potential (E 0 = −2.38 V). Therefore, with an adequate control of Mg concentration in metal oxide (MO) films, oxygen-related defects could be easily suppressed without additional treatments and then stable metal–oxygen–metal (M–O–M) network formation could be achieved, causing excellent operational stability. By optimal Mg doping (10%) in the InO x channel layer, Mg:InO x TFTs exhibited negligible clockwise hysteresis and a field-effect mobility of &gt;4 cm2 V–1 s–1. Furthermore, the electric characteristics of the low-temperature-processed AlO x gate dielectric with high impurities were improved by Mg diffusion originating in Mg doping, resulting in stable threshold voltage shift in the bias stability test.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>31791119</pmid><doi>10.1021/acsami.9b17642</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-0057-1893</orcidid><orcidid>https://orcid.org/0000-0002-5607-3327</orcidid><orcidid>https://orcid.org/0000-0001-9617-2541</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2019-12, Vol.11 (51), p.48054-48061
issn 1944-8244
1944-8252
language eng
recordid cdi_proquest_miscellaneous_2320875683
source American Chemical Society Journals
title Suppression of Interfacial Disorders in Solution-Processed Metal Oxide Thin-Film Transistors by Mg Doping
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T13%3A54%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Suppression%20of%20Interfacial%20Disorders%20in%20Solution-Processed%20Metal%20Oxide%20Thin-Film%20Transistors%20by%20Mg%20Doping&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Heo,%20Jae%20Sang&rft.date=2019-12-26&rft.volume=11&rft.issue=51&rft.spage=48054&rft.epage=48061&rft.pages=48054-48061&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.9b17642&rft_dat=%3Cproquest_cross%3E2320875683%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2320875683&rft_id=info:pmid/31791119&rfr_iscdi=true