Double Chalcogen Bonds: Crystal Engineering Stratagems via Diffraction and Multinuclear Solid‐State Magnetic Resonance Spectroscopy

Group 16 chalcogens potentially provide Lewis‐acidic σ‐holes, which are able to form attractive supramolecular interactions with electron rich partners through chalcogen bonds. Here, a multifaceted experimental and computational study of a large series of novel chalcogen‐bonded cocrystals, prepared...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry : a European journal 2020-03, Vol.26 (15), p.3275-3286
Hauptverfasser: Kumar, Vijith, Xu, Yijue, Bryce, David L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3286
container_issue 15
container_start_page 3275
container_title Chemistry : a European journal
container_volume 26
creator Kumar, Vijith
Xu, Yijue
Bryce, David L.
description Group 16 chalcogens potentially provide Lewis‐acidic σ‐holes, which are able to form attractive supramolecular interactions with electron rich partners through chalcogen bonds. Here, a multifaceted experimental and computational study of a large series of novel chalcogen‐bonded cocrystals, prepared using the principles of crystal engineering, is presented. Single‐crystal X‐ray diffraction studies reveal that dicyanoselenadiazole and dicyanotelluradiazole derivatives work as promising supramolecular synthons with the ability to form double chalcogen bonds with a wide range of electron donors including halides and oxygen‐ and nitrogen‐containing heterocycles. Extensive 77Se and 125Te solid‐state nuclear magnetic resonance spectroscopic investigations of cocrystals establish correlations between the NMR parameters of selenium and tellurium and the local chalcogen bonding geometry. The relationships between the electronic environment of the chalcogen bond and the 77Se and 125Te chemical shift tensors were elucidated through a natural localized molecular orbital density functional theory analysis. This systematic study of chalcogen‐bond‐based crystal engineering lays the foundations for the preparation of the various multicomponent systems and establishes solid‐state NMR protocols to detect these interactions in powdered materials. Crystal engineering: Dicyanoselenadiazole and dicyanotelluradiazole derivatives work as promising supramolecular synthons with the ability to form double chalcogen bonds with a wide range of electron donors. A a multifaceted experimental and computational study of a large series of novel chalcogen‐bonded cocrystals, prepared using the principles of crystal engineering is presented here.
doi_str_mv 10.1002/chem.201904795
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2320875230</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2320875230</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4105-4440b10620e0a4ea8628d774fbbde81fb45c1ce04f5714d1736ae3c5ac427aec3</originalsourceid><addsrcrecordid>eNqFkT2P1DAQQC0E4vYOWkpkiYYmy_gjcUIHuYVDuhUSC3XkOJOcT4692Alou2vo-Y38EnLa45BoqKZ58zSjR8gzBmsGwF-ZKxzXHFgFUlX5A7JiOWeZUEX-kKygkiorclGdkNOUrgGgKoR4TE4EU5WEkq_Ij_Mwtw5pfaWdCQN6-jb4Lr2mdTykSTu68YP1iNH6ge6mqCc94JjoN6vpue37qM1kg6fad3Q7u8n62TjUke6Cs92vm5-7SU9It3rwOFlDP2EKXnuDdLdHM8WQTNgfnpBHvXYJn97NM_Ll3eZzfZFdfnz_oX5zmRnJIM-klNAyKDggaIm6LHjZKSX7tu2wZH0rc8MMguxzxWTHlCg0CpNrI7nSaMQZeXn07mP4OmOamtEmg85pj2FODRccSpVzAQv64h_0OszRL9ctlCoKYJLLhVofKbN8kiL2zT7aUcdDw6C5DdTcBmruAy0Lz--0cztid4__KbIA1RH4bh0e_qNr6ovN9q_8N7OVn14</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2376601424</pqid></control><display><type>article</type><title>Double Chalcogen Bonds: Crystal Engineering Stratagems via Diffraction and Multinuclear Solid‐State Magnetic Resonance Spectroscopy</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Kumar, Vijith ; Xu, Yijue ; Bryce, David L.</creator><creatorcontrib>Kumar, Vijith ; Xu, Yijue ; Bryce, David L.</creatorcontrib><description>Group 16 chalcogens potentially provide Lewis‐acidic σ‐holes, which are able to form attractive supramolecular interactions with electron rich partners through chalcogen bonds. Here, a multifaceted experimental and computational study of a large series of novel chalcogen‐bonded cocrystals, prepared using the principles of crystal engineering, is presented. Single‐crystal X‐ray diffraction studies reveal that dicyanoselenadiazole and dicyanotelluradiazole derivatives work as promising supramolecular synthons with the ability to form double chalcogen bonds with a wide range of electron donors including halides and oxygen‐ and nitrogen‐containing heterocycles. Extensive 77Se and 125Te solid‐state nuclear magnetic resonance spectroscopic investigations of cocrystals establish correlations between the NMR parameters of selenium and tellurium and the local chalcogen bonding geometry. The relationships between the electronic environment of the chalcogen bond and the 77Se and 125Te chemical shift tensors were elucidated through a natural localized molecular orbital density functional theory analysis. This systematic study of chalcogen‐bond‐based crystal engineering lays the foundations for the preparation of the various multicomponent systems and establishes solid‐state NMR protocols to detect these interactions in powdered materials. Crystal engineering: Dicyanoselenadiazole and dicyanotelluradiazole derivatives work as promising supramolecular synthons with the ability to form double chalcogen bonds with a wide range of electron donors. A a multifaceted experimental and computational study of a large series of novel chalcogen‐bonded cocrystals, prepared using the principles of crystal engineering is presented here.</description><identifier>ISSN: 0947-6539</identifier><identifier>EISSN: 1521-3765</identifier><identifier>DOI: 10.1002/chem.201904795</identifier><identifier>PMID: 31794082</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Chalcogen bonds ; Chemical equilibrium ; Chemistry ; Computer applications ; crystal engineering ; Crystals ; Density functional theory ; dicyanoselenadiazole ; dicyanotelluradiazole ; Diffraction ; Donors (electronic) ; Engineering ; Halides ; Magnetic resonance spectroscopy ; molecular orbital analysis ; Molecular orbitals ; NMR ; Nuclear magnetic resonance ; Resonance ; Selenium ; solid-state NMR ; Tellurium ; Tensors</subject><ispartof>Chemistry : a European journal, 2020-03, Vol.26 (15), p.3275-3286</ispartof><rights>2019 Wiley‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2019 Wiley-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><rights>2020 Wiley‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4105-4440b10620e0a4ea8628d774fbbde81fb45c1ce04f5714d1736ae3c5ac427aec3</citedby><cites>FETCH-LOGICAL-c4105-4440b10620e0a4ea8628d774fbbde81fb45c1ce04f5714d1736ae3c5ac427aec3</cites><orcidid>0000-0001-9989-796X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fchem.201904795$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fchem.201904795$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31794082$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kumar, Vijith</creatorcontrib><creatorcontrib>Xu, Yijue</creatorcontrib><creatorcontrib>Bryce, David L.</creatorcontrib><title>Double Chalcogen Bonds: Crystal Engineering Stratagems via Diffraction and Multinuclear Solid‐State Magnetic Resonance Spectroscopy</title><title>Chemistry : a European journal</title><addtitle>Chemistry</addtitle><description>Group 16 chalcogens potentially provide Lewis‐acidic σ‐holes, which are able to form attractive supramolecular interactions with electron rich partners through chalcogen bonds. Here, a multifaceted experimental and computational study of a large series of novel chalcogen‐bonded cocrystals, prepared using the principles of crystal engineering, is presented. Single‐crystal X‐ray diffraction studies reveal that dicyanoselenadiazole and dicyanotelluradiazole derivatives work as promising supramolecular synthons with the ability to form double chalcogen bonds with a wide range of electron donors including halides and oxygen‐ and nitrogen‐containing heterocycles. Extensive 77Se and 125Te solid‐state nuclear magnetic resonance spectroscopic investigations of cocrystals establish correlations between the NMR parameters of selenium and tellurium and the local chalcogen bonding geometry. The relationships between the electronic environment of the chalcogen bond and the 77Se and 125Te chemical shift tensors were elucidated through a natural localized molecular orbital density functional theory analysis. This systematic study of chalcogen‐bond‐based crystal engineering lays the foundations for the preparation of the various multicomponent systems and establishes solid‐state NMR protocols to detect these interactions in powdered materials. Crystal engineering: Dicyanoselenadiazole and dicyanotelluradiazole derivatives work as promising supramolecular synthons with the ability to form double chalcogen bonds with a wide range of electron donors. A a multifaceted experimental and computational study of a large series of novel chalcogen‐bonded cocrystals, prepared using the principles of crystal engineering is presented here.</description><subject>Chalcogen bonds</subject><subject>Chemical equilibrium</subject><subject>Chemistry</subject><subject>Computer applications</subject><subject>crystal engineering</subject><subject>Crystals</subject><subject>Density functional theory</subject><subject>dicyanoselenadiazole</subject><subject>dicyanotelluradiazole</subject><subject>Diffraction</subject><subject>Donors (electronic)</subject><subject>Engineering</subject><subject>Halides</subject><subject>Magnetic resonance spectroscopy</subject><subject>molecular orbital analysis</subject><subject>Molecular orbitals</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Resonance</subject><subject>Selenium</subject><subject>solid-state NMR</subject><subject>Tellurium</subject><subject>Tensors</subject><issn>0947-6539</issn><issn>1521-3765</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkT2P1DAQQC0E4vYOWkpkiYYmy_gjcUIHuYVDuhUSC3XkOJOcT4692Alou2vo-Y38EnLa45BoqKZ58zSjR8gzBmsGwF-ZKxzXHFgFUlX5A7JiOWeZUEX-kKygkiorclGdkNOUrgGgKoR4TE4EU5WEkq_Ij_Mwtw5pfaWdCQN6-jb4Lr2mdTykSTu68YP1iNH6ge6mqCc94JjoN6vpue37qM1kg6fad3Q7u8n62TjUke6Cs92vm5-7SU9It3rwOFlDP2EKXnuDdLdHM8WQTNgfnpBHvXYJn97NM_Ll3eZzfZFdfnz_oX5zmRnJIM-klNAyKDggaIm6LHjZKSX7tu2wZH0rc8MMguxzxWTHlCg0CpNrI7nSaMQZeXn07mP4OmOamtEmg85pj2FODRccSpVzAQv64h_0OszRL9ctlCoKYJLLhVofKbN8kiL2zT7aUcdDw6C5DdTcBmruAy0Lz--0cztid4__KbIA1RH4bh0e_qNr6ovN9q_8N7OVn14</recordid><startdate>20200312</startdate><enddate>20200312</enddate><creator>Kumar, Vijith</creator><creator>Xu, Yijue</creator><creator>Bryce, David L.</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9989-796X</orcidid></search><sort><creationdate>20200312</creationdate><title>Double Chalcogen Bonds: Crystal Engineering Stratagems via Diffraction and Multinuclear Solid‐State Magnetic Resonance Spectroscopy</title><author>Kumar, Vijith ; Xu, Yijue ; Bryce, David L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4105-4440b10620e0a4ea8628d774fbbde81fb45c1ce04f5714d1736ae3c5ac427aec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Chalcogen bonds</topic><topic>Chemical equilibrium</topic><topic>Chemistry</topic><topic>Computer applications</topic><topic>crystal engineering</topic><topic>Crystals</topic><topic>Density functional theory</topic><topic>dicyanoselenadiazole</topic><topic>dicyanotelluradiazole</topic><topic>Diffraction</topic><topic>Donors (electronic)</topic><topic>Engineering</topic><topic>Halides</topic><topic>Magnetic resonance spectroscopy</topic><topic>molecular orbital analysis</topic><topic>Molecular orbitals</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Resonance</topic><topic>Selenium</topic><topic>solid-state NMR</topic><topic>Tellurium</topic><topic>Tensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumar, Vijith</creatorcontrib><creatorcontrib>Xu, Yijue</creatorcontrib><creatorcontrib>Bryce, David L.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Chemistry : a European journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumar, Vijith</au><au>Xu, Yijue</au><au>Bryce, David L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Double Chalcogen Bonds: Crystal Engineering Stratagems via Diffraction and Multinuclear Solid‐State Magnetic Resonance Spectroscopy</atitle><jtitle>Chemistry : a European journal</jtitle><addtitle>Chemistry</addtitle><date>2020-03-12</date><risdate>2020</risdate><volume>26</volume><issue>15</issue><spage>3275</spage><epage>3286</epage><pages>3275-3286</pages><issn>0947-6539</issn><eissn>1521-3765</eissn><abstract>Group 16 chalcogens potentially provide Lewis‐acidic σ‐holes, which are able to form attractive supramolecular interactions with electron rich partners through chalcogen bonds. Here, a multifaceted experimental and computational study of a large series of novel chalcogen‐bonded cocrystals, prepared using the principles of crystal engineering, is presented. Single‐crystal X‐ray diffraction studies reveal that dicyanoselenadiazole and dicyanotelluradiazole derivatives work as promising supramolecular synthons with the ability to form double chalcogen bonds with a wide range of electron donors including halides and oxygen‐ and nitrogen‐containing heterocycles. Extensive 77Se and 125Te solid‐state nuclear magnetic resonance spectroscopic investigations of cocrystals establish correlations between the NMR parameters of selenium and tellurium and the local chalcogen bonding geometry. The relationships between the electronic environment of the chalcogen bond and the 77Se and 125Te chemical shift tensors were elucidated through a natural localized molecular orbital density functional theory analysis. This systematic study of chalcogen‐bond‐based crystal engineering lays the foundations for the preparation of the various multicomponent systems and establishes solid‐state NMR protocols to detect these interactions in powdered materials. Crystal engineering: Dicyanoselenadiazole and dicyanotelluradiazole derivatives work as promising supramolecular synthons with the ability to form double chalcogen bonds with a wide range of electron donors. A a multifaceted experimental and computational study of a large series of novel chalcogen‐bonded cocrystals, prepared using the principles of crystal engineering is presented here.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>31794082</pmid><doi>10.1002/chem.201904795</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-9989-796X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0947-6539
ispartof Chemistry : a European journal, 2020-03, Vol.26 (15), p.3275-3286
issn 0947-6539
1521-3765
language eng
recordid cdi_proquest_miscellaneous_2320875230
source Wiley Online Library Journals Frontfile Complete
subjects Chalcogen bonds
Chemical equilibrium
Chemistry
Computer applications
crystal engineering
Crystals
Density functional theory
dicyanoselenadiazole
dicyanotelluradiazole
Diffraction
Donors (electronic)
Engineering
Halides
Magnetic resonance spectroscopy
molecular orbital analysis
Molecular orbitals
NMR
Nuclear magnetic resonance
Resonance
Selenium
solid-state NMR
Tellurium
Tensors
title Double Chalcogen Bonds: Crystal Engineering Stratagems via Diffraction and Multinuclear Solid‐State Magnetic Resonance Spectroscopy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T14%3A30%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Double%20Chalcogen%20Bonds:%20Crystal%20Engineering%20Stratagems%20via%20Diffraction%20and%20Multinuclear%20Solid%E2%80%90State%20Magnetic%20Resonance%20Spectroscopy&rft.jtitle=Chemistry%20:%20a%20European%20journal&rft.au=Kumar,%20Vijith&rft.date=2020-03-12&rft.volume=26&rft.issue=15&rft.spage=3275&rft.epage=3286&rft.pages=3275-3286&rft.issn=0947-6539&rft.eissn=1521-3765&rft_id=info:doi/10.1002/chem.201904795&rft_dat=%3Cproquest_cross%3E2320875230%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2376601424&rft_id=info:pmid/31794082&rfr_iscdi=true