Double Chalcogen Bonds: Crystal Engineering Stratagems via Diffraction and Multinuclear Solid‐State Magnetic Resonance Spectroscopy
Group 16 chalcogens potentially provide Lewis‐acidic σ‐holes, which are able to form attractive supramolecular interactions with electron rich partners through chalcogen bonds. Here, a multifaceted experimental and computational study of a large series of novel chalcogen‐bonded cocrystals, prepared...
Gespeichert in:
Veröffentlicht in: | Chemistry : a European journal 2020-03, Vol.26 (15), p.3275-3286 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3286 |
---|---|
container_issue | 15 |
container_start_page | 3275 |
container_title | Chemistry : a European journal |
container_volume | 26 |
creator | Kumar, Vijith Xu, Yijue Bryce, David L. |
description | Group 16 chalcogens potentially provide Lewis‐acidic σ‐holes, which are able to form attractive supramolecular interactions with electron rich partners through chalcogen bonds. Here, a multifaceted experimental and computational study of a large series of novel chalcogen‐bonded cocrystals, prepared using the principles of crystal engineering, is presented. Single‐crystal X‐ray diffraction studies reveal that dicyanoselenadiazole and dicyanotelluradiazole derivatives work as promising supramolecular synthons with the ability to form double chalcogen bonds with a wide range of electron donors including halides and oxygen‐ and nitrogen‐containing heterocycles. Extensive 77Se and 125Te solid‐state nuclear magnetic resonance spectroscopic investigations of cocrystals establish correlations between the NMR parameters of selenium and tellurium and the local chalcogen bonding geometry. The relationships between the electronic environment of the chalcogen bond and the 77Se and 125Te chemical shift tensors were elucidated through a natural localized molecular orbital density functional theory analysis. This systematic study of chalcogen‐bond‐based crystal engineering lays the foundations for the preparation of the various multicomponent systems and establishes solid‐state NMR protocols to detect these interactions in powdered materials.
Crystal engineering: Dicyanoselenadiazole and dicyanotelluradiazole derivatives work as promising supramolecular synthons with the ability to form double chalcogen bonds with a wide range of electron donors. A a multifaceted experimental and computational study of a large series of novel chalcogen‐bonded cocrystals, prepared using the principles of crystal engineering is presented here. |
doi_str_mv | 10.1002/chem.201904795 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2320875230</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2320875230</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4105-4440b10620e0a4ea8628d774fbbde81fb45c1ce04f5714d1736ae3c5ac427aec3</originalsourceid><addsrcrecordid>eNqFkT2P1DAQQC0E4vYOWkpkiYYmy_gjcUIHuYVDuhUSC3XkOJOcT4692Alou2vo-Y38EnLa45BoqKZ58zSjR8gzBmsGwF-ZKxzXHFgFUlX5A7JiOWeZUEX-kKygkiorclGdkNOUrgGgKoR4TE4EU5WEkq_Ij_Mwtw5pfaWdCQN6-jb4Lr2mdTykSTu68YP1iNH6ge6mqCc94JjoN6vpue37qM1kg6fad3Q7u8n62TjUke6Cs92vm5-7SU9It3rwOFlDP2EKXnuDdLdHM8WQTNgfnpBHvXYJn97NM_Ll3eZzfZFdfnz_oX5zmRnJIM-klNAyKDggaIm6LHjZKSX7tu2wZH0rc8MMguxzxWTHlCg0CpNrI7nSaMQZeXn07mP4OmOamtEmg85pj2FODRccSpVzAQv64h_0OszRL9ctlCoKYJLLhVofKbN8kiL2zT7aUcdDw6C5DdTcBmruAy0Lz--0cztid4__KbIA1RH4bh0e_qNr6ovN9q_8N7OVn14</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2376601424</pqid></control><display><type>article</type><title>Double Chalcogen Bonds: Crystal Engineering Stratagems via Diffraction and Multinuclear Solid‐State Magnetic Resonance Spectroscopy</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Kumar, Vijith ; Xu, Yijue ; Bryce, David L.</creator><creatorcontrib>Kumar, Vijith ; Xu, Yijue ; Bryce, David L.</creatorcontrib><description>Group 16 chalcogens potentially provide Lewis‐acidic σ‐holes, which are able to form attractive supramolecular interactions with electron rich partners through chalcogen bonds. Here, a multifaceted experimental and computational study of a large series of novel chalcogen‐bonded cocrystals, prepared using the principles of crystal engineering, is presented. Single‐crystal X‐ray diffraction studies reveal that dicyanoselenadiazole and dicyanotelluradiazole derivatives work as promising supramolecular synthons with the ability to form double chalcogen bonds with a wide range of electron donors including halides and oxygen‐ and nitrogen‐containing heterocycles. Extensive 77Se and 125Te solid‐state nuclear magnetic resonance spectroscopic investigations of cocrystals establish correlations between the NMR parameters of selenium and tellurium and the local chalcogen bonding geometry. The relationships between the electronic environment of the chalcogen bond and the 77Se and 125Te chemical shift tensors were elucidated through a natural localized molecular orbital density functional theory analysis. This systematic study of chalcogen‐bond‐based crystal engineering lays the foundations for the preparation of the various multicomponent systems and establishes solid‐state NMR protocols to detect these interactions in powdered materials.
Crystal engineering: Dicyanoselenadiazole and dicyanotelluradiazole derivatives work as promising supramolecular synthons with the ability to form double chalcogen bonds with a wide range of electron donors. A a multifaceted experimental and computational study of a large series of novel chalcogen‐bonded cocrystals, prepared using the principles of crystal engineering is presented here.</description><identifier>ISSN: 0947-6539</identifier><identifier>EISSN: 1521-3765</identifier><identifier>DOI: 10.1002/chem.201904795</identifier><identifier>PMID: 31794082</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Chalcogen bonds ; Chemical equilibrium ; Chemistry ; Computer applications ; crystal engineering ; Crystals ; Density functional theory ; dicyanoselenadiazole ; dicyanotelluradiazole ; Diffraction ; Donors (electronic) ; Engineering ; Halides ; Magnetic resonance spectroscopy ; molecular orbital analysis ; Molecular orbitals ; NMR ; Nuclear magnetic resonance ; Resonance ; Selenium ; solid-state NMR ; Tellurium ; Tensors</subject><ispartof>Chemistry : a European journal, 2020-03, Vol.26 (15), p.3275-3286</ispartof><rights>2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><rights>2020 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4105-4440b10620e0a4ea8628d774fbbde81fb45c1ce04f5714d1736ae3c5ac427aec3</citedby><cites>FETCH-LOGICAL-c4105-4440b10620e0a4ea8628d774fbbde81fb45c1ce04f5714d1736ae3c5ac427aec3</cites><orcidid>0000-0001-9989-796X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fchem.201904795$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fchem.201904795$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31794082$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kumar, Vijith</creatorcontrib><creatorcontrib>Xu, Yijue</creatorcontrib><creatorcontrib>Bryce, David L.</creatorcontrib><title>Double Chalcogen Bonds: Crystal Engineering Stratagems via Diffraction and Multinuclear Solid‐State Magnetic Resonance Spectroscopy</title><title>Chemistry : a European journal</title><addtitle>Chemistry</addtitle><description>Group 16 chalcogens potentially provide Lewis‐acidic σ‐holes, which are able to form attractive supramolecular interactions with electron rich partners through chalcogen bonds. Here, a multifaceted experimental and computational study of a large series of novel chalcogen‐bonded cocrystals, prepared using the principles of crystal engineering, is presented. Single‐crystal X‐ray diffraction studies reveal that dicyanoselenadiazole and dicyanotelluradiazole derivatives work as promising supramolecular synthons with the ability to form double chalcogen bonds with a wide range of electron donors including halides and oxygen‐ and nitrogen‐containing heterocycles. Extensive 77Se and 125Te solid‐state nuclear magnetic resonance spectroscopic investigations of cocrystals establish correlations between the NMR parameters of selenium and tellurium and the local chalcogen bonding geometry. The relationships between the electronic environment of the chalcogen bond and the 77Se and 125Te chemical shift tensors were elucidated through a natural localized molecular orbital density functional theory analysis. This systematic study of chalcogen‐bond‐based crystal engineering lays the foundations for the preparation of the various multicomponent systems and establishes solid‐state NMR protocols to detect these interactions in powdered materials.
Crystal engineering: Dicyanoselenadiazole and dicyanotelluradiazole derivatives work as promising supramolecular synthons with the ability to form double chalcogen bonds with a wide range of electron donors. A a multifaceted experimental and computational study of a large series of novel chalcogen‐bonded cocrystals, prepared using the principles of crystal engineering is presented here.</description><subject>Chalcogen bonds</subject><subject>Chemical equilibrium</subject><subject>Chemistry</subject><subject>Computer applications</subject><subject>crystal engineering</subject><subject>Crystals</subject><subject>Density functional theory</subject><subject>dicyanoselenadiazole</subject><subject>dicyanotelluradiazole</subject><subject>Diffraction</subject><subject>Donors (electronic)</subject><subject>Engineering</subject><subject>Halides</subject><subject>Magnetic resonance spectroscopy</subject><subject>molecular orbital analysis</subject><subject>Molecular orbitals</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Resonance</subject><subject>Selenium</subject><subject>solid-state NMR</subject><subject>Tellurium</subject><subject>Tensors</subject><issn>0947-6539</issn><issn>1521-3765</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkT2P1DAQQC0E4vYOWkpkiYYmy_gjcUIHuYVDuhUSC3XkOJOcT4692Alou2vo-Y38EnLa45BoqKZ58zSjR8gzBmsGwF-ZKxzXHFgFUlX5A7JiOWeZUEX-kKygkiorclGdkNOUrgGgKoR4TE4EU5WEkq_Ij_Mwtw5pfaWdCQN6-jb4Lr2mdTykSTu68YP1iNH6ge6mqCc94JjoN6vpue37qM1kg6fad3Q7u8n62TjUke6Cs92vm5-7SU9It3rwOFlDP2EKXnuDdLdHM8WQTNgfnpBHvXYJn97NM_Ll3eZzfZFdfnz_oX5zmRnJIM-klNAyKDggaIm6LHjZKSX7tu2wZH0rc8MMguxzxWTHlCg0CpNrI7nSaMQZeXn07mP4OmOamtEmg85pj2FODRccSpVzAQv64h_0OszRL9ctlCoKYJLLhVofKbN8kiL2zT7aUcdDw6C5DdTcBmruAy0Lz--0cztid4__KbIA1RH4bh0e_qNr6ovN9q_8N7OVn14</recordid><startdate>20200312</startdate><enddate>20200312</enddate><creator>Kumar, Vijith</creator><creator>Xu, Yijue</creator><creator>Bryce, David L.</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9989-796X</orcidid></search><sort><creationdate>20200312</creationdate><title>Double Chalcogen Bonds: Crystal Engineering Stratagems via Diffraction and Multinuclear Solid‐State Magnetic Resonance Spectroscopy</title><author>Kumar, Vijith ; Xu, Yijue ; Bryce, David L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4105-4440b10620e0a4ea8628d774fbbde81fb45c1ce04f5714d1736ae3c5ac427aec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Chalcogen bonds</topic><topic>Chemical equilibrium</topic><topic>Chemistry</topic><topic>Computer applications</topic><topic>crystal engineering</topic><topic>Crystals</topic><topic>Density functional theory</topic><topic>dicyanoselenadiazole</topic><topic>dicyanotelluradiazole</topic><topic>Diffraction</topic><topic>Donors (electronic)</topic><topic>Engineering</topic><topic>Halides</topic><topic>Magnetic resonance spectroscopy</topic><topic>molecular orbital analysis</topic><topic>Molecular orbitals</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Resonance</topic><topic>Selenium</topic><topic>solid-state NMR</topic><topic>Tellurium</topic><topic>Tensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumar, Vijith</creatorcontrib><creatorcontrib>Xu, Yijue</creatorcontrib><creatorcontrib>Bryce, David L.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Chemistry : a European journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumar, Vijith</au><au>Xu, Yijue</au><au>Bryce, David L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Double Chalcogen Bonds: Crystal Engineering Stratagems via Diffraction and Multinuclear Solid‐State Magnetic Resonance Spectroscopy</atitle><jtitle>Chemistry : a European journal</jtitle><addtitle>Chemistry</addtitle><date>2020-03-12</date><risdate>2020</risdate><volume>26</volume><issue>15</issue><spage>3275</spage><epage>3286</epage><pages>3275-3286</pages><issn>0947-6539</issn><eissn>1521-3765</eissn><abstract>Group 16 chalcogens potentially provide Lewis‐acidic σ‐holes, which are able to form attractive supramolecular interactions with electron rich partners through chalcogen bonds. Here, a multifaceted experimental and computational study of a large series of novel chalcogen‐bonded cocrystals, prepared using the principles of crystal engineering, is presented. Single‐crystal X‐ray diffraction studies reveal that dicyanoselenadiazole and dicyanotelluradiazole derivatives work as promising supramolecular synthons with the ability to form double chalcogen bonds with a wide range of electron donors including halides and oxygen‐ and nitrogen‐containing heterocycles. Extensive 77Se and 125Te solid‐state nuclear magnetic resonance spectroscopic investigations of cocrystals establish correlations between the NMR parameters of selenium and tellurium and the local chalcogen bonding geometry. The relationships between the electronic environment of the chalcogen bond and the 77Se and 125Te chemical shift tensors were elucidated through a natural localized molecular orbital density functional theory analysis. This systematic study of chalcogen‐bond‐based crystal engineering lays the foundations for the preparation of the various multicomponent systems and establishes solid‐state NMR protocols to detect these interactions in powdered materials.
Crystal engineering: Dicyanoselenadiazole and dicyanotelluradiazole derivatives work as promising supramolecular synthons with the ability to form double chalcogen bonds with a wide range of electron donors. A a multifaceted experimental and computational study of a large series of novel chalcogen‐bonded cocrystals, prepared using the principles of crystal engineering is presented here.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>31794082</pmid><doi>10.1002/chem.201904795</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-9989-796X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0947-6539 |
ispartof | Chemistry : a European journal, 2020-03, Vol.26 (15), p.3275-3286 |
issn | 0947-6539 1521-3765 |
language | eng |
recordid | cdi_proquest_miscellaneous_2320875230 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Chalcogen bonds Chemical equilibrium Chemistry Computer applications crystal engineering Crystals Density functional theory dicyanoselenadiazole dicyanotelluradiazole Diffraction Donors (electronic) Engineering Halides Magnetic resonance spectroscopy molecular orbital analysis Molecular orbitals NMR Nuclear magnetic resonance Resonance Selenium solid-state NMR Tellurium Tensors |
title | Double Chalcogen Bonds: Crystal Engineering Stratagems via Diffraction and Multinuclear Solid‐State Magnetic Resonance Spectroscopy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T14%3A30%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Double%20Chalcogen%20Bonds:%20Crystal%20Engineering%20Stratagems%20via%20Diffraction%20and%20Multinuclear%20Solid%E2%80%90State%20Magnetic%20Resonance%20Spectroscopy&rft.jtitle=Chemistry%20:%20a%20European%20journal&rft.au=Kumar,%20Vijith&rft.date=2020-03-12&rft.volume=26&rft.issue=15&rft.spage=3275&rft.epage=3286&rft.pages=3275-3286&rft.issn=0947-6539&rft.eissn=1521-3765&rft_id=info:doi/10.1002/chem.201904795&rft_dat=%3Cproquest_cross%3E2320875230%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2376601424&rft_id=info:pmid/31794082&rfr_iscdi=true |