Fine-Tuning Semiconducting Polymer Self-Aggregation and Crystallinity Enables Optimal Morphology and High-Performance Printed All-Polymer Solar Cells

Polymer aggregation and crystallization behavior play a crucial role in the performance of all-polymer solar cells (all-PSCs). Gaining control over polymer self-assembly via molecular design to influence bulk-heterojunction active-layer morphology, however, remains challenging. Herein, we show a sim...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2020-01, Vol.142 (1), p.392-406
Hauptverfasser: Wu, Yilei, Schneider, Sebastian, Walter, Christopher, Chowdhury, Ashraful Haider, Bahrami, Behzad, Wu, Hung-Chin, Qiao, Qiquan, Toney, Michael F, Bao, Zhenan
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 406
container_issue 1
container_start_page 392
container_title Journal of the American Chemical Society
container_volume 142
creator Wu, Yilei
Schneider, Sebastian
Walter, Christopher
Chowdhury, Ashraful Haider
Bahrami, Behzad
Wu, Hung-Chin
Qiao, Qiquan
Toney, Michael F
Bao, Zhenan
description Polymer aggregation and crystallization behavior play a crucial role in the performance of all-polymer solar cells (all-PSCs). Gaining control over polymer self-assembly via molecular design to influence bulk-heterojunction active-layer morphology, however, remains challenging. Herein, we show a simple yet effective way to modulate the self-aggregation of the commonly used naphthalene diimide (NDI)-based acceptor polymer (N2200), by systematically replacing a certain amount of alkyl side-chains with compact bulky side-chains (CBS). Specifically, we have synthesized a series of random copolymer (PNDI-CBS x ) with different molar fractions (x = 0–1) of the CBS units and have found that both solution-phase aggregation and solid-state crystallinity of these acceptor polymers are progressively suppressed with increasing x as evidenced by UV–vis absorption, photoluminescence (PL) spectroscopies, thermal analysis, and grazing incidence X-ray scattering (GIWAXS) techniques. Importantly, as compared to the highly self-aggregating N2200, photovoltaic results show that blending of more amorphous acceptor polymers with donor polymer (PBDB-T) can enable all-PSCs with significantly increased PCE (up to 8.5%). The higher short-circuit current density (J sc) results from the smaller polymer phase-separation domain sizes as evidenced by PL quenching and resonant soft X-ray scattering (R-SoXS) analyses. Additionally, we show that the lower crystallinity of the active layer is less sensitive to the film deposition methods. Thus, the transition from spin-coating to solution coating can be easily achieved with no performance losses. On the other hand, decreasing aggregation and crystallinity of the acceptor polymer too much reduces the photovoltaic performance as the donor phase-separation domain sizes increases. The highly amorphous acceptor polymers appear to induce formation of larger donor polymer crystallites. These results highlight the importance of a balanced aggregation strength between the donor and acceptor polymers to achieve high-performance all-PSCs with optimal active layer film morphology.
doi_str_mv 10.1021/jacs.9b10935
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2320874110</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2320874110</sourcerecordid><originalsourceid>FETCH-LOGICAL-a427t-77c46e8ffbe3df5f59aa952ad7d6266ef93f22c9bb0224b7e67cffd16e05ed123</originalsourceid><addsrcrecordid>eNptkU1P3DAQhq0KVLbArWfkI4ca_JHEm-NqBaUSFSsB58ixx8Erx17s5JAfwv8lW7b00tNoRs-88_Ei9J3RK0Y5u94qna_qltFalF_QgpWckpLx6ggtKKWcyGUlTtC3nLdzWvAl-4pOBJO1kFIs0NutC0CexuBChx-hdzoGM-phn26in3pIc9lbsuq6BJ0aXAxYBYPXacqD8t4FN0z4JqjWQ8YPu8H1yuPfMe1eoo_d9Ae-c90L2UCyMfUqaMCb5MIABq-8J59jolcJr8H7fIaOrfIZzg_xFD3f3jyt78j9w89f69U9UQWXA5FSFxUsrW1BGFvaslaqLrky0lS8qsDWwnKu67alnBethEpqaw2rgJZgGBen6PJDd5fi6wh5aHqX9byBChDH3HDB6VIWjNEZ_fGB6hRzTmCbXZpPTVPDaLM3otkb0RyMmPGLg_LY9mA-4b-f_zd637WNYwrzof_Xegd8WZTh</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2320874110</pqid></control><display><type>article</type><title>Fine-Tuning Semiconducting Polymer Self-Aggregation and Crystallinity Enables Optimal Morphology and High-Performance Printed All-Polymer Solar Cells</title><source>ACS Publications</source><creator>Wu, Yilei ; Schneider, Sebastian ; Walter, Christopher ; Chowdhury, Ashraful Haider ; Bahrami, Behzad ; Wu, Hung-Chin ; Qiao, Qiquan ; Toney, Michael F ; Bao, Zhenan</creator><creatorcontrib>Wu, Yilei ; Schneider, Sebastian ; Walter, Christopher ; Chowdhury, Ashraful Haider ; Bahrami, Behzad ; Wu, Hung-Chin ; Qiao, Qiquan ; Toney, Michael F ; Bao, Zhenan</creatorcontrib><description>Polymer aggregation and crystallization behavior play a crucial role in the performance of all-polymer solar cells (all-PSCs). Gaining control over polymer self-assembly via molecular design to influence bulk-heterojunction active-layer morphology, however, remains challenging. Herein, we show a simple yet effective way to modulate the self-aggregation of the commonly used naphthalene diimide (NDI)-based acceptor polymer (N2200), by systematically replacing a certain amount of alkyl side-chains with compact bulky side-chains (CBS). Specifically, we have synthesized a series of random copolymer (PNDI-CBS x ) with different molar fractions (x = 0–1) of the CBS units and have found that both solution-phase aggregation and solid-state crystallinity of these acceptor polymers are progressively suppressed with increasing x as evidenced by UV–vis absorption, photoluminescence (PL) spectroscopies, thermal analysis, and grazing incidence X-ray scattering (GIWAXS) techniques. Importantly, as compared to the highly self-aggregating N2200, photovoltaic results show that blending of more amorphous acceptor polymers with donor polymer (PBDB-T) can enable all-PSCs with significantly increased PCE (up to 8.5%). The higher short-circuit current density (J sc) results from the smaller polymer phase-separation domain sizes as evidenced by PL quenching and resonant soft X-ray scattering (R-SoXS) analyses. Additionally, we show that the lower crystallinity of the active layer is less sensitive to the film deposition methods. Thus, the transition from spin-coating to solution coating can be easily achieved with no performance losses. On the other hand, decreasing aggregation and crystallinity of the acceptor polymer too much reduces the photovoltaic performance as the donor phase-separation domain sizes increases. The highly amorphous acceptor polymers appear to induce formation of larger donor polymer crystallites. These results highlight the importance of a balanced aggregation strength between the donor and acceptor polymers to achieve high-performance all-PSCs with optimal active layer film morphology.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.9b10935</identifier><identifier>PMID: 31793773</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Journal of the American Chemical Society, 2020-01, Vol.142 (1), p.392-406</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a427t-77c46e8ffbe3df5f59aa952ad7d6266ef93f22c9bb0224b7e67cffd16e05ed123</citedby><cites>FETCH-LOGICAL-a427t-77c46e8ffbe3df5f59aa952ad7d6266ef93f22c9bb0224b7e67cffd16e05ed123</cites><orcidid>0000-0002-7513-1166 ; 0000-0001-6492-0525 ; 0000-0001-6756-1855 ; 0000-0002-4555-7887 ; 0000-0002-0972-1715</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jacs.9b10935$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jacs.9b10935$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2751,27055,27903,27904,56716,56766</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31793773$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wu, Yilei</creatorcontrib><creatorcontrib>Schneider, Sebastian</creatorcontrib><creatorcontrib>Walter, Christopher</creatorcontrib><creatorcontrib>Chowdhury, Ashraful Haider</creatorcontrib><creatorcontrib>Bahrami, Behzad</creatorcontrib><creatorcontrib>Wu, Hung-Chin</creatorcontrib><creatorcontrib>Qiao, Qiquan</creatorcontrib><creatorcontrib>Toney, Michael F</creatorcontrib><creatorcontrib>Bao, Zhenan</creatorcontrib><title>Fine-Tuning Semiconducting Polymer Self-Aggregation and Crystallinity Enables Optimal Morphology and High-Performance Printed All-Polymer Solar Cells</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>Polymer aggregation and crystallization behavior play a crucial role in the performance of all-polymer solar cells (all-PSCs). Gaining control over polymer self-assembly via molecular design to influence bulk-heterojunction active-layer morphology, however, remains challenging. Herein, we show a simple yet effective way to modulate the self-aggregation of the commonly used naphthalene diimide (NDI)-based acceptor polymer (N2200), by systematically replacing a certain amount of alkyl side-chains with compact bulky side-chains (CBS). Specifically, we have synthesized a series of random copolymer (PNDI-CBS x ) with different molar fractions (x = 0–1) of the CBS units and have found that both solution-phase aggregation and solid-state crystallinity of these acceptor polymers are progressively suppressed with increasing x as evidenced by UV–vis absorption, photoluminescence (PL) spectroscopies, thermal analysis, and grazing incidence X-ray scattering (GIWAXS) techniques. Importantly, as compared to the highly self-aggregating N2200, photovoltaic results show that blending of more amorphous acceptor polymers with donor polymer (PBDB-T) can enable all-PSCs with significantly increased PCE (up to 8.5%). The higher short-circuit current density (J sc) results from the smaller polymer phase-separation domain sizes as evidenced by PL quenching and resonant soft X-ray scattering (R-SoXS) analyses. Additionally, we show that the lower crystallinity of the active layer is less sensitive to the film deposition methods. Thus, the transition from spin-coating to solution coating can be easily achieved with no performance losses. On the other hand, decreasing aggregation and crystallinity of the acceptor polymer too much reduces the photovoltaic performance as the donor phase-separation domain sizes increases. The highly amorphous acceptor polymers appear to induce formation of larger donor polymer crystallites. These results highlight the importance of a balanced aggregation strength between the donor and acceptor polymers to achieve high-performance all-PSCs with optimal active layer film morphology.</description><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNptkU1P3DAQhq0KVLbArWfkI4ca_JHEm-NqBaUSFSsB58ixx8Erx17s5JAfwv8lW7b00tNoRs-88_Ei9J3RK0Y5u94qna_qltFalF_QgpWckpLx6ggtKKWcyGUlTtC3nLdzWvAl-4pOBJO1kFIs0NutC0CexuBChx-hdzoGM-phn26in3pIc9lbsuq6BJ0aXAxYBYPXacqD8t4FN0z4JqjWQ8YPu8H1yuPfMe1eoo_d9Ae-c90L2UCyMfUqaMCb5MIABq-8J59jolcJr8H7fIaOrfIZzg_xFD3f3jyt78j9w89f69U9UQWXA5FSFxUsrW1BGFvaslaqLrky0lS8qsDWwnKu67alnBethEpqaw2rgJZgGBen6PJDd5fi6wh5aHqX9byBChDH3HDB6VIWjNEZ_fGB6hRzTmCbXZpPTVPDaLM3otkb0RyMmPGLg_LY9mA-4b-f_zd637WNYwrzof_Xegd8WZTh</recordid><startdate>20200108</startdate><enddate>20200108</enddate><creator>Wu, Yilei</creator><creator>Schneider, Sebastian</creator><creator>Walter, Christopher</creator><creator>Chowdhury, Ashraful Haider</creator><creator>Bahrami, Behzad</creator><creator>Wu, Hung-Chin</creator><creator>Qiao, Qiquan</creator><creator>Toney, Michael F</creator><creator>Bao, Zhenan</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7513-1166</orcidid><orcidid>https://orcid.org/0000-0001-6492-0525</orcidid><orcidid>https://orcid.org/0000-0001-6756-1855</orcidid><orcidid>https://orcid.org/0000-0002-4555-7887</orcidid><orcidid>https://orcid.org/0000-0002-0972-1715</orcidid></search><sort><creationdate>20200108</creationdate><title>Fine-Tuning Semiconducting Polymer Self-Aggregation and Crystallinity Enables Optimal Morphology and High-Performance Printed All-Polymer Solar Cells</title><author>Wu, Yilei ; Schneider, Sebastian ; Walter, Christopher ; Chowdhury, Ashraful Haider ; Bahrami, Behzad ; Wu, Hung-Chin ; Qiao, Qiquan ; Toney, Michael F ; Bao, Zhenan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a427t-77c46e8ffbe3df5f59aa952ad7d6266ef93f22c9bb0224b7e67cffd16e05ed123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Yilei</creatorcontrib><creatorcontrib>Schneider, Sebastian</creatorcontrib><creatorcontrib>Walter, Christopher</creatorcontrib><creatorcontrib>Chowdhury, Ashraful Haider</creatorcontrib><creatorcontrib>Bahrami, Behzad</creatorcontrib><creatorcontrib>Wu, Hung-Chin</creatorcontrib><creatorcontrib>Qiao, Qiquan</creatorcontrib><creatorcontrib>Toney, Michael F</creatorcontrib><creatorcontrib>Bao, Zhenan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Yilei</au><au>Schneider, Sebastian</au><au>Walter, Christopher</au><au>Chowdhury, Ashraful Haider</au><au>Bahrami, Behzad</au><au>Wu, Hung-Chin</au><au>Qiao, Qiquan</au><au>Toney, Michael F</au><au>Bao, Zhenan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fine-Tuning Semiconducting Polymer Self-Aggregation and Crystallinity Enables Optimal Morphology and High-Performance Printed All-Polymer Solar Cells</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2020-01-08</date><risdate>2020</risdate><volume>142</volume><issue>1</issue><spage>392</spage><epage>406</epage><pages>392-406</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>Polymer aggregation and crystallization behavior play a crucial role in the performance of all-polymer solar cells (all-PSCs). Gaining control over polymer self-assembly via molecular design to influence bulk-heterojunction active-layer morphology, however, remains challenging. Herein, we show a simple yet effective way to modulate the self-aggregation of the commonly used naphthalene diimide (NDI)-based acceptor polymer (N2200), by systematically replacing a certain amount of alkyl side-chains with compact bulky side-chains (CBS). Specifically, we have synthesized a series of random copolymer (PNDI-CBS x ) with different molar fractions (x = 0–1) of the CBS units and have found that both solution-phase aggregation and solid-state crystallinity of these acceptor polymers are progressively suppressed with increasing x as evidenced by UV–vis absorption, photoluminescence (PL) spectroscopies, thermal analysis, and grazing incidence X-ray scattering (GIWAXS) techniques. Importantly, as compared to the highly self-aggregating N2200, photovoltaic results show that blending of more amorphous acceptor polymers with donor polymer (PBDB-T) can enable all-PSCs with significantly increased PCE (up to 8.5%). The higher short-circuit current density (J sc) results from the smaller polymer phase-separation domain sizes as evidenced by PL quenching and resonant soft X-ray scattering (R-SoXS) analyses. Additionally, we show that the lower crystallinity of the active layer is less sensitive to the film deposition methods. Thus, the transition from spin-coating to solution coating can be easily achieved with no performance losses. On the other hand, decreasing aggregation and crystallinity of the acceptor polymer too much reduces the photovoltaic performance as the donor phase-separation domain sizes increases. The highly amorphous acceptor polymers appear to induce formation of larger donor polymer crystallites. These results highlight the importance of a balanced aggregation strength between the donor and acceptor polymers to achieve high-performance all-PSCs with optimal active layer film morphology.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>31793773</pmid><doi>10.1021/jacs.9b10935</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-7513-1166</orcidid><orcidid>https://orcid.org/0000-0001-6492-0525</orcidid><orcidid>https://orcid.org/0000-0001-6756-1855</orcidid><orcidid>https://orcid.org/0000-0002-4555-7887</orcidid><orcidid>https://orcid.org/0000-0002-0972-1715</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0002-7863
ispartof Journal of the American Chemical Society, 2020-01, Vol.142 (1), p.392-406
issn 0002-7863
1520-5126
language eng
recordid cdi_proquest_miscellaneous_2320874110
source ACS Publications
title Fine-Tuning Semiconducting Polymer Self-Aggregation and Crystallinity Enables Optimal Morphology and High-Performance Printed All-Polymer Solar Cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T23%3A21%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fine-Tuning%20Semiconducting%20Polymer%20Self-Aggregation%20and%20Crystallinity%20Enables%20Optimal%20Morphology%20and%20High-Performance%20Printed%20All-Polymer%20Solar%20Cells&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Wu,%20Yilei&rft.date=2020-01-08&rft.volume=142&rft.issue=1&rft.spage=392&rft.epage=406&rft.pages=392-406&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.9b10935&rft_dat=%3Cproquest_cross%3E2320874110%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2320874110&rft_id=info:pmid/31793773&rfr_iscdi=true