Engineering Smart Nanofluidic Systems for Artificial Ion Channels and Ion Pumps: From Single‐Pore to Multichannel Membranes
Biological ion channels and ion pumps with intricate ion transport functions widely exist in living organisms and play irreplaceable roles in almost all physiological functions. Nanofluidics provides exciting opportunities to mimic these working processes, which not only helps understand ion transpo...
Gespeichert in:
Veröffentlicht in: | Advanced materials (Weinheim) 2020-01, Vol.32 (4), p.e1904351-n/a |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 4 |
container_start_page | e1904351 |
container_title | Advanced materials (Weinheim) |
container_volume | 32 |
creator | Zhang, Zhen Huang, Xiaodong Qian, Yongchao Chen, Weipeng Wen, Liping Jiang, Lei |
description | Biological ion channels and ion pumps with intricate ion transport functions widely exist in living organisms and play irreplaceable roles in almost all physiological functions. Nanofluidics provides exciting opportunities to mimic these working processes, which not only helps understand ion transport in biological systems but also paves the way for the applications of artificial devices in many valuable areas. Recent progress in the engineering of smart nanofluidic systems for artificial ion channels and ion pumps is summarized. The artificial systems range from chemically and structurally diverse lipid‐membrane‐based nanopores to robust and scalable solid‐state nanopores. A generic strategy of gate location design is proposed. The single‐pore‐based platform concept can be rationally extended into multichannel membrane systems and shows unprecedented potential in many application areas, such as single‐molecule analysis, smart mass delivery, and energy conversion. Finally, some present underpinning issues that need to be addressed are discussed.
Inspired by the working mechanism of the biological ion channels and ion pumps in electric eels, a generic strategy for engineering smart nanofluidic systems for artificial ion channels and ion pumps is proposed and put into context with recent advances. These artificial systems show great promise in single‐molecule analysis, smart mass delivery, and energy conversion. |
doi_str_mv | 10.1002/adma.201904351 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2320873575</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2320873575</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3731-df1f2813f4959e87fac245de5d6720660b25b5d4a3c5df9eaede0df32d9a2cfc3</originalsourceid><addsrcrecordid>eNqFkc1qGzEURkVpaZyk2yyLoJtsxtXPaMbqzjhJG4jTgNP1IEtXiYJGcqUZgheFPkKesU9SpU5TyKarC5dzDx_3Q-iIkiklhH1UpldTRqgkNRf0FZpQwWhVEyleowmRXFSyqWd7aD_nO0KIbEjzFu1x2kre8maCfpyGGxcAkgs3eNWrNOBLFaL1ozNO49U2D9BnbGPC8zQ467RTHp_HgBe3KgTwGatg_iyuxn6TP-GzFHu8KjoPv34-XMUEeIh4OfrB6d0JXkK_TipAPkRvrPIZ3j3NA_Tt7PR68aW6-Pr5fDG_qHRJSStjqWUzym0thYRZa5VmtTAgTNMy0jRkzcRamFpxLYyVoMAAMZYzIxXTVvMDdLzzblL8PkIeut5lDd6XEHHMHeOMzFouWlHQDy_QuzimUNIVqhZ100pBCzXdUTrFnBPYbpNc-d62o6R7LKZ7LKZ7LqYcvH_SjusezDP-t4kCyB1w7zxs_6Pr5ifL-T_5b3vznCY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2345467951</pqid></control><display><type>article</type><title>Engineering Smart Nanofluidic Systems for Artificial Ion Channels and Ion Pumps: From Single‐Pore to Multichannel Membranes</title><source>Access via Wiley Online Library</source><creator>Zhang, Zhen ; Huang, Xiaodong ; Qian, Yongchao ; Chen, Weipeng ; Wen, Liping ; Jiang, Lei</creator><creatorcontrib>Zhang, Zhen ; Huang, Xiaodong ; Qian, Yongchao ; Chen, Weipeng ; Wen, Liping ; Jiang, Lei</creatorcontrib><description>Biological ion channels and ion pumps with intricate ion transport functions widely exist in living organisms and play irreplaceable roles in almost all physiological functions. Nanofluidics provides exciting opportunities to mimic these working processes, which not only helps understand ion transport in biological systems but also paves the way for the applications of artificial devices in many valuable areas. Recent progress in the engineering of smart nanofluidic systems for artificial ion channels and ion pumps is summarized. The artificial systems range from chemically and structurally diverse lipid‐membrane‐based nanopores to robust and scalable solid‐state nanopores. A generic strategy of gate location design is proposed. The single‐pore‐based platform concept can be rationally extended into multichannel membrane systems and shows unprecedented potential in many application areas, such as single‐molecule analysis, smart mass delivery, and energy conversion. Finally, some present underpinning issues that need to be addressed are discussed.
Inspired by the working mechanism of the biological ion channels and ion pumps in electric eels, a generic strategy for engineering smart nanofluidic systems for artificial ion channels and ion pumps is proposed and put into context with recent advances. These artificial systems show great promise in single‐molecule analysis, smart mass delivery, and energy conversion.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.201904351</identifier><identifier>PMID: 31793736</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>bioinspiration ; Energy conversion ; Fluidics ; Ion channels ; Ion pumps ; Ion transport ; Ions ; Lipids ; Materials science ; Membranes ; nanofluidics ; Nanofluids ; Organic chemistry ; Porosity ; smart materials</subject><ispartof>Advanced materials (Weinheim), 2020-01, Vol.32 (4), p.e1904351-n/a</ispartof><rights>2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><rights>2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3731-df1f2813f4959e87fac245de5d6720660b25b5d4a3c5df9eaede0df32d9a2cfc3</citedby><cites>FETCH-LOGICAL-c3731-df1f2813f4959e87fac245de5d6720660b25b5d4a3c5df9eaede0df32d9a2cfc3</cites><orcidid>0000-0003-4579-728X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.201904351$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.201904351$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31793736$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Zhen</creatorcontrib><creatorcontrib>Huang, Xiaodong</creatorcontrib><creatorcontrib>Qian, Yongchao</creatorcontrib><creatorcontrib>Chen, Weipeng</creatorcontrib><creatorcontrib>Wen, Liping</creatorcontrib><creatorcontrib>Jiang, Lei</creatorcontrib><title>Engineering Smart Nanofluidic Systems for Artificial Ion Channels and Ion Pumps: From Single‐Pore to Multichannel Membranes</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Biological ion channels and ion pumps with intricate ion transport functions widely exist in living organisms and play irreplaceable roles in almost all physiological functions. Nanofluidics provides exciting opportunities to mimic these working processes, which not only helps understand ion transport in biological systems but also paves the way for the applications of artificial devices in many valuable areas. Recent progress in the engineering of smart nanofluidic systems for artificial ion channels and ion pumps is summarized. The artificial systems range from chemically and structurally diverse lipid‐membrane‐based nanopores to robust and scalable solid‐state nanopores. A generic strategy of gate location design is proposed. The single‐pore‐based platform concept can be rationally extended into multichannel membrane systems and shows unprecedented potential in many application areas, such as single‐molecule analysis, smart mass delivery, and energy conversion. Finally, some present underpinning issues that need to be addressed are discussed.
Inspired by the working mechanism of the biological ion channels and ion pumps in electric eels, a generic strategy for engineering smart nanofluidic systems for artificial ion channels and ion pumps is proposed and put into context with recent advances. These artificial systems show great promise in single‐molecule analysis, smart mass delivery, and energy conversion.</description><subject>bioinspiration</subject><subject>Energy conversion</subject><subject>Fluidics</subject><subject>Ion channels</subject><subject>Ion pumps</subject><subject>Ion transport</subject><subject>Ions</subject><subject>Lipids</subject><subject>Materials science</subject><subject>Membranes</subject><subject>nanofluidics</subject><subject>Nanofluids</subject><subject>Organic chemistry</subject><subject>Porosity</subject><subject>smart materials</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkc1qGzEURkVpaZyk2yyLoJtsxtXPaMbqzjhJG4jTgNP1IEtXiYJGcqUZgheFPkKesU9SpU5TyKarC5dzDx_3Q-iIkiklhH1UpldTRqgkNRf0FZpQwWhVEyleowmRXFSyqWd7aD_nO0KIbEjzFu1x2kre8maCfpyGGxcAkgs3eNWrNOBLFaL1ozNO49U2D9BnbGPC8zQ467RTHp_HgBe3KgTwGatg_iyuxn6TP-GzFHu8KjoPv34-XMUEeIh4OfrB6d0JXkK_TipAPkRvrPIZ3j3NA_Tt7PR68aW6-Pr5fDG_qHRJSStjqWUzym0thYRZa5VmtTAgTNMy0jRkzcRamFpxLYyVoMAAMZYzIxXTVvMDdLzzblL8PkIeut5lDd6XEHHMHeOMzFouWlHQDy_QuzimUNIVqhZ100pBCzXdUTrFnBPYbpNc-d62o6R7LKZ7LKZ7LqYcvH_SjusezDP-t4kCyB1w7zxs_6Pr5ifL-T_5b3vznCY</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Zhang, Zhen</creator><creator>Huang, Xiaodong</creator><creator>Qian, Yongchao</creator><creator>Chen, Weipeng</creator><creator>Wen, Liping</creator><creator>Jiang, Lei</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4579-728X</orcidid></search><sort><creationdate>20200101</creationdate><title>Engineering Smart Nanofluidic Systems for Artificial Ion Channels and Ion Pumps: From Single‐Pore to Multichannel Membranes</title><author>Zhang, Zhen ; Huang, Xiaodong ; Qian, Yongchao ; Chen, Weipeng ; Wen, Liping ; Jiang, Lei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3731-df1f2813f4959e87fac245de5d6720660b25b5d4a3c5df9eaede0df32d9a2cfc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>bioinspiration</topic><topic>Energy conversion</topic><topic>Fluidics</topic><topic>Ion channels</topic><topic>Ion pumps</topic><topic>Ion transport</topic><topic>Ions</topic><topic>Lipids</topic><topic>Materials science</topic><topic>Membranes</topic><topic>nanofluidics</topic><topic>Nanofluids</topic><topic>Organic chemistry</topic><topic>Porosity</topic><topic>smart materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Zhen</creatorcontrib><creatorcontrib>Huang, Xiaodong</creatorcontrib><creatorcontrib>Qian, Yongchao</creatorcontrib><creatorcontrib>Chen, Weipeng</creatorcontrib><creatorcontrib>Wen, Liping</creatorcontrib><creatorcontrib>Jiang, Lei</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Zhen</au><au>Huang, Xiaodong</au><au>Qian, Yongchao</au><au>Chen, Weipeng</au><au>Wen, Liping</au><au>Jiang, Lei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Engineering Smart Nanofluidic Systems for Artificial Ion Channels and Ion Pumps: From Single‐Pore to Multichannel Membranes</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2020-01-01</date><risdate>2020</risdate><volume>32</volume><issue>4</issue><spage>e1904351</spage><epage>n/a</epage><pages>e1904351-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Biological ion channels and ion pumps with intricate ion transport functions widely exist in living organisms and play irreplaceable roles in almost all physiological functions. Nanofluidics provides exciting opportunities to mimic these working processes, which not only helps understand ion transport in biological systems but also paves the way for the applications of artificial devices in many valuable areas. Recent progress in the engineering of smart nanofluidic systems for artificial ion channels and ion pumps is summarized. The artificial systems range from chemically and structurally diverse lipid‐membrane‐based nanopores to robust and scalable solid‐state nanopores. A generic strategy of gate location design is proposed. The single‐pore‐based platform concept can be rationally extended into multichannel membrane systems and shows unprecedented potential in many application areas, such as single‐molecule analysis, smart mass delivery, and energy conversion. Finally, some present underpinning issues that need to be addressed are discussed.
Inspired by the working mechanism of the biological ion channels and ion pumps in electric eels, a generic strategy for engineering smart nanofluidic systems for artificial ion channels and ion pumps is proposed and put into context with recent advances. These artificial systems show great promise in single‐molecule analysis, smart mass delivery, and energy conversion.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>31793736</pmid><doi>10.1002/adma.201904351</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-4579-728X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0935-9648 |
ispartof | Advanced materials (Weinheim), 2020-01, Vol.32 (4), p.e1904351-n/a |
issn | 0935-9648 1521-4095 |
language | eng |
recordid | cdi_proquest_miscellaneous_2320873575 |
source | Access via Wiley Online Library |
subjects | bioinspiration Energy conversion Fluidics Ion channels Ion pumps Ion transport Ions Lipids Materials science Membranes nanofluidics Nanofluids Organic chemistry Porosity smart materials |
title | Engineering Smart Nanofluidic Systems for Artificial Ion Channels and Ion Pumps: From Single‐Pore to Multichannel Membranes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T00%3A42%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Engineering%20Smart%20Nanofluidic%20Systems%20for%20Artificial%20Ion%20Channels%20and%20Ion%20Pumps:%20From%20Single%E2%80%90Pore%20to%20Multichannel%20Membranes&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Zhang,%20Zhen&rft.date=2020-01-01&rft.volume=32&rft.issue=4&rft.spage=e1904351&rft.epage=n/a&rft.pages=e1904351-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.201904351&rft_dat=%3Cproquest_cross%3E2320873575%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2345467951&rft_id=info:pmid/31793736&rfr_iscdi=true |