Engineering Smart Nanofluidic Systems for Artificial Ion Channels and Ion Pumps: From Single‐Pore to Multichannel Membranes

Biological ion channels and ion pumps with intricate ion transport functions widely exist in living organisms and play irreplaceable roles in almost all physiological functions. Nanofluidics provides exciting opportunities to mimic these working processes, which not only helps understand ion transpo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2020-01, Vol.32 (4), p.e1904351-n/a
Hauptverfasser: Zhang, Zhen, Huang, Xiaodong, Qian, Yongchao, Chen, Weipeng, Wen, Liping, Jiang, Lei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 4
container_start_page e1904351
container_title Advanced materials (Weinheim)
container_volume 32
creator Zhang, Zhen
Huang, Xiaodong
Qian, Yongchao
Chen, Weipeng
Wen, Liping
Jiang, Lei
description Biological ion channels and ion pumps with intricate ion transport functions widely exist in living organisms and play irreplaceable roles in almost all physiological functions. Nanofluidics provides exciting opportunities to mimic these working processes, which not only helps understand ion transport in biological systems but also paves the way for the applications of artificial devices in many valuable areas. Recent progress in the engineering of smart nanofluidic systems for artificial ion channels and ion pumps is summarized. The artificial systems range from chemically and structurally diverse lipid‐membrane‐based nanopores to robust and scalable solid‐state nanopores. A generic strategy of gate location design is proposed. The single‐pore‐based platform concept can be rationally extended into multichannel membrane systems and shows unprecedented potential in many application areas, such as single‐molecule analysis, smart mass delivery, and energy conversion. Finally, some present underpinning issues that need to be addressed are discussed. Inspired by the working mechanism of the biological ion channels and ion pumps in electric eels, a generic strategy for engineering smart nanofluidic systems for artificial ion channels and ion pumps is proposed and put into context with recent advances. These artificial systems show great promise in single‐molecule analysis, smart mass delivery, and energy conversion.
doi_str_mv 10.1002/adma.201904351
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2320873575</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2320873575</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3731-df1f2813f4959e87fac245de5d6720660b25b5d4a3c5df9eaede0df32d9a2cfc3</originalsourceid><addsrcrecordid>eNqFkc1qGzEURkVpaZyk2yyLoJtsxtXPaMbqzjhJG4jTgNP1IEtXiYJGcqUZgheFPkKesU9SpU5TyKarC5dzDx_3Q-iIkiklhH1UpldTRqgkNRf0FZpQwWhVEyleowmRXFSyqWd7aD_nO0KIbEjzFu1x2kre8maCfpyGGxcAkgs3eNWrNOBLFaL1ozNO49U2D9BnbGPC8zQ467RTHp_HgBe3KgTwGatg_iyuxn6TP-GzFHu8KjoPv34-XMUEeIh4OfrB6d0JXkK_TipAPkRvrPIZ3j3NA_Tt7PR68aW6-Pr5fDG_qHRJSStjqWUzym0thYRZa5VmtTAgTNMy0jRkzcRamFpxLYyVoMAAMZYzIxXTVvMDdLzzblL8PkIeut5lDd6XEHHMHeOMzFouWlHQDy_QuzimUNIVqhZ100pBCzXdUTrFnBPYbpNc-d62o6R7LKZ7LKZ7LqYcvH_SjusezDP-t4kCyB1w7zxs_6Pr5ifL-T_5b3vznCY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2345467951</pqid></control><display><type>article</type><title>Engineering Smart Nanofluidic Systems for Artificial Ion Channels and Ion Pumps: From Single‐Pore to Multichannel Membranes</title><source>Access via Wiley Online Library</source><creator>Zhang, Zhen ; Huang, Xiaodong ; Qian, Yongchao ; Chen, Weipeng ; Wen, Liping ; Jiang, Lei</creator><creatorcontrib>Zhang, Zhen ; Huang, Xiaodong ; Qian, Yongchao ; Chen, Weipeng ; Wen, Liping ; Jiang, Lei</creatorcontrib><description>Biological ion channels and ion pumps with intricate ion transport functions widely exist in living organisms and play irreplaceable roles in almost all physiological functions. Nanofluidics provides exciting opportunities to mimic these working processes, which not only helps understand ion transport in biological systems but also paves the way for the applications of artificial devices in many valuable areas. Recent progress in the engineering of smart nanofluidic systems for artificial ion channels and ion pumps is summarized. The artificial systems range from chemically and structurally diverse lipid‐membrane‐based nanopores to robust and scalable solid‐state nanopores. A generic strategy of gate location design is proposed. The single‐pore‐based platform concept can be rationally extended into multichannel membrane systems and shows unprecedented potential in many application areas, such as single‐molecule analysis, smart mass delivery, and energy conversion. Finally, some present underpinning issues that need to be addressed are discussed. Inspired by the working mechanism of the biological ion channels and ion pumps in electric eels, a generic strategy for engineering smart nanofluidic systems for artificial ion channels and ion pumps is proposed and put into context with recent advances. These artificial systems show great promise in single‐molecule analysis, smart mass delivery, and energy conversion.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.201904351</identifier><identifier>PMID: 31793736</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>bioinspiration ; Energy conversion ; Fluidics ; Ion channels ; Ion pumps ; Ion transport ; Ions ; Lipids ; Materials science ; Membranes ; nanofluidics ; Nanofluids ; Organic chemistry ; Porosity ; smart materials</subject><ispartof>Advanced materials (Weinheim), 2020-01, Vol.32 (4), p.e1904351-n/a</ispartof><rights>2019 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2019 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><rights>2020 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3731-df1f2813f4959e87fac245de5d6720660b25b5d4a3c5df9eaede0df32d9a2cfc3</citedby><cites>FETCH-LOGICAL-c3731-df1f2813f4959e87fac245de5d6720660b25b5d4a3c5df9eaede0df32d9a2cfc3</cites><orcidid>0000-0003-4579-728X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.201904351$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.201904351$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31793736$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Zhen</creatorcontrib><creatorcontrib>Huang, Xiaodong</creatorcontrib><creatorcontrib>Qian, Yongchao</creatorcontrib><creatorcontrib>Chen, Weipeng</creatorcontrib><creatorcontrib>Wen, Liping</creatorcontrib><creatorcontrib>Jiang, Lei</creatorcontrib><title>Engineering Smart Nanofluidic Systems for Artificial Ion Channels and Ion Pumps: From Single‐Pore to Multichannel Membranes</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Biological ion channels and ion pumps with intricate ion transport functions widely exist in living organisms and play irreplaceable roles in almost all physiological functions. Nanofluidics provides exciting opportunities to mimic these working processes, which not only helps understand ion transport in biological systems but also paves the way for the applications of artificial devices in many valuable areas. Recent progress in the engineering of smart nanofluidic systems for artificial ion channels and ion pumps is summarized. The artificial systems range from chemically and structurally diverse lipid‐membrane‐based nanopores to robust and scalable solid‐state nanopores. A generic strategy of gate location design is proposed. The single‐pore‐based platform concept can be rationally extended into multichannel membrane systems and shows unprecedented potential in many application areas, such as single‐molecule analysis, smart mass delivery, and energy conversion. Finally, some present underpinning issues that need to be addressed are discussed. Inspired by the working mechanism of the biological ion channels and ion pumps in electric eels, a generic strategy for engineering smart nanofluidic systems for artificial ion channels and ion pumps is proposed and put into context with recent advances. These artificial systems show great promise in single‐molecule analysis, smart mass delivery, and energy conversion.</description><subject>bioinspiration</subject><subject>Energy conversion</subject><subject>Fluidics</subject><subject>Ion channels</subject><subject>Ion pumps</subject><subject>Ion transport</subject><subject>Ions</subject><subject>Lipids</subject><subject>Materials science</subject><subject>Membranes</subject><subject>nanofluidics</subject><subject>Nanofluids</subject><subject>Organic chemistry</subject><subject>Porosity</subject><subject>smart materials</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkc1qGzEURkVpaZyk2yyLoJtsxtXPaMbqzjhJG4jTgNP1IEtXiYJGcqUZgheFPkKesU9SpU5TyKarC5dzDx_3Q-iIkiklhH1UpldTRqgkNRf0FZpQwWhVEyleowmRXFSyqWd7aD_nO0KIbEjzFu1x2kre8maCfpyGGxcAkgs3eNWrNOBLFaL1ozNO49U2D9BnbGPC8zQ467RTHp_HgBe3KgTwGatg_iyuxn6TP-GzFHu8KjoPv34-XMUEeIh4OfrB6d0JXkK_TipAPkRvrPIZ3j3NA_Tt7PR68aW6-Pr5fDG_qHRJSStjqWUzym0thYRZa5VmtTAgTNMy0jRkzcRamFpxLYyVoMAAMZYzIxXTVvMDdLzzblL8PkIeut5lDd6XEHHMHeOMzFouWlHQDy_QuzimUNIVqhZ100pBCzXdUTrFnBPYbpNc-d62o6R7LKZ7LKZ7LqYcvH_SjusezDP-t4kCyB1w7zxs_6Pr5ifL-T_5b3vznCY</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Zhang, Zhen</creator><creator>Huang, Xiaodong</creator><creator>Qian, Yongchao</creator><creator>Chen, Weipeng</creator><creator>Wen, Liping</creator><creator>Jiang, Lei</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4579-728X</orcidid></search><sort><creationdate>20200101</creationdate><title>Engineering Smart Nanofluidic Systems for Artificial Ion Channels and Ion Pumps: From Single‐Pore to Multichannel Membranes</title><author>Zhang, Zhen ; Huang, Xiaodong ; Qian, Yongchao ; Chen, Weipeng ; Wen, Liping ; Jiang, Lei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3731-df1f2813f4959e87fac245de5d6720660b25b5d4a3c5df9eaede0df32d9a2cfc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>bioinspiration</topic><topic>Energy conversion</topic><topic>Fluidics</topic><topic>Ion channels</topic><topic>Ion pumps</topic><topic>Ion transport</topic><topic>Ions</topic><topic>Lipids</topic><topic>Materials science</topic><topic>Membranes</topic><topic>nanofluidics</topic><topic>Nanofluids</topic><topic>Organic chemistry</topic><topic>Porosity</topic><topic>smart materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Zhen</creatorcontrib><creatorcontrib>Huang, Xiaodong</creatorcontrib><creatorcontrib>Qian, Yongchao</creatorcontrib><creatorcontrib>Chen, Weipeng</creatorcontrib><creatorcontrib>Wen, Liping</creatorcontrib><creatorcontrib>Jiang, Lei</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Zhen</au><au>Huang, Xiaodong</au><au>Qian, Yongchao</au><au>Chen, Weipeng</au><au>Wen, Liping</au><au>Jiang, Lei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Engineering Smart Nanofluidic Systems for Artificial Ion Channels and Ion Pumps: From Single‐Pore to Multichannel Membranes</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2020-01-01</date><risdate>2020</risdate><volume>32</volume><issue>4</issue><spage>e1904351</spage><epage>n/a</epage><pages>e1904351-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Biological ion channels and ion pumps with intricate ion transport functions widely exist in living organisms and play irreplaceable roles in almost all physiological functions. Nanofluidics provides exciting opportunities to mimic these working processes, which not only helps understand ion transport in biological systems but also paves the way for the applications of artificial devices in many valuable areas. Recent progress in the engineering of smart nanofluidic systems for artificial ion channels and ion pumps is summarized. The artificial systems range from chemically and structurally diverse lipid‐membrane‐based nanopores to robust and scalable solid‐state nanopores. A generic strategy of gate location design is proposed. The single‐pore‐based platform concept can be rationally extended into multichannel membrane systems and shows unprecedented potential in many application areas, such as single‐molecule analysis, smart mass delivery, and energy conversion. Finally, some present underpinning issues that need to be addressed are discussed. Inspired by the working mechanism of the biological ion channels and ion pumps in electric eels, a generic strategy for engineering smart nanofluidic systems for artificial ion channels and ion pumps is proposed and put into context with recent advances. These artificial systems show great promise in single‐molecule analysis, smart mass delivery, and energy conversion.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>31793736</pmid><doi>10.1002/adma.201904351</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-4579-728X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2020-01, Vol.32 (4), p.e1904351-n/a
issn 0935-9648
1521-4095
language eng
recordid cdi_proquest_miscellaneous_2320873575
source Access via Wiley Online Library
subjects bioinspiration
Energy conversion
Fluidics
Ion channels
Ion pumps
Ion transport
Ions
Lipids
Materials science
Membranes
nanofluidics
Nanofluids
Organic chemistry
Porosity
smart materials
title Engineering Smart Nanofluidic Systems for Artificial Ion Channels and Ion Pumps: From Single‐Pore to Multichannel Membranes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T00%3A42%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Engineering%20Smart%20Nanofluidic%20Systems%20for%20Artificial%20Ion%20Channels%20and%20Ion%20Pumps:%20From%20Single%E2%80%90Pore%20to%20Multichannel%20Membranes&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Zhang,%20Zhen&rft.date=2020-01-01&rft.volume=32&rft.issue=4&rft.spage=e1904351&rft.epage=n/a&rft.pages=e1904351-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.201904351&rft_dat=%3Cproquest_cross%3E2320873575%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2345467951&rft_id=info:pmid/31793736&rfr_iscdi=true