Integrated Microfluidic Device for Accurate Extracellular Vesicle Quantification and Protein Markers Analysis Directly from Human Whole Blood
Extracellular vesicles (EVs) have the potential to be utilized as disease-specific biomarkers. Although strategies for on-chip isolation and detection of EVs have recently been developed, they need preprocessing of clinical samples and are not accurate enough for disease diagnosis just judging by EV...
Gespeichert in:
Veröffentlicht in: | Analytical chemistry (Washington) 2020-01, Vol.92 (1), p.1574-1581 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1581 |
---|---|
container_issue | 1 |
container_start_page | 1574 |
container_title | Analytical chemistry (Washington) |
container_volume | 92 |
creator | Zhou, Sisi Hu, Tao Zhang, Fen Tang, Dezhi Li, Dake Cao, Jian Wei, Wei Wu, Yafeng Liu, Songqin |
description | Extracellular vesicles (EVs) have the potential to be utilized as disease-specific biomarkers. Although strategies for on-chip isolation and detection of EVs have recently been developed, they need preprocessing of clinical samples and are not accurate enough for disease diagnosis just judging by EVs concentration. Here, we designed an integrated microfluidic device named a plasma separation and EV detection (PS-ED) chip for plasma separation, quantification, and high-throughput protein analysis of EVs directly from clinical whole blood samples. The device included two modules (PS and ED module): the PS module was a six-loop microchannel for rapid separation of plasma from clinical whole blood samples under inertial force; the amount of EVs in the separated plasma kept the same value as in the initial blood samples. The module reduced the mechanical damage to the blood cells and thus reduced the interference of debris or cellular contents from damaged cells during EVs detection; the ED module contained four S-channels for quantification and high-throughput protein analysis of EVs; a wide detection range from 2.5 × 102 to 2.5 × 108 particles/μL with a detection limit of 95 particles/μL was obtained. Through simultanously monitoring three proteins (CD81, CD24, and EpCAM) of EVs, the cancer type can be accurately confirmed. Furthermore, clinical blood sample analysis verified that the proposed device could be used for accurate diagnosis and therapy monitoring of ovarian cancer. |
doi_str_mv | 10.1021/acs.analchem.9b04852 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2320377875</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2335666442</sourcerecordid><originalsourceid>FETCH-LOGICAL-a376t-5273eec2f289954254bce7b8a91dabdfbfd8fe57b5a6af3b74407c7737283a513</originalsourceid><addsrcrecordid>eNp9kctu1DAUhi0EokPLGyBkiQ2bDL7EcbIc2kIrtYJKLSyjE-eYuiRx6wtiHoJ3JtFMu2DB6my-__c5_gh5w9maM8E_gIlrmGAwtzium46VtRLPyIorwYqqrsVzsmKMyUJoxg7IqxjvGOOc8eolOZBc60YyvSJ_zqeEPwIk7OmlM8HbIbveGXqCv5xBan2gG2PyQtDT3ymAwWHIAwT6DaMzA9KrDFNy1hlIzk8Upp5-DT6hm-glhJ8YIt3Me26ji_TEBTRp2FIb_EjP8ggT_X7r55aPg_f9EXlhYYj4ej8Pyc2n0-vjs-Liy-fz481FAVJXqVBCS0QjrKibRpVClZ1B3dXQ8B663na2ry0q3SmowMpOlyXTRmupRS1BcXlI3u9674N_yBhTO7q4HAYT-hxbIQWTWtdazei7f9A7n8N8z0JJVVVVWYqZKnfU_IMxBrTtfXAjhG3LWbvoamdd7aOudq9rjr3dl-duxP4p9OhnBtgOWOJPD_-38y8rn6aY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2335666442</pqid></control><display><type>article</type><title>Integrated Microfluidic Device for Accurate Extracellular Vesicle Quantification and Protein Markers Analysis Directly from Human Whole Blood</title><source>MEDLINE</source><source>ACS Publications</source><creator>Zhou, Sisi ; Hu, Tao ; Zhang, Fen ; Tang, Dezhi ; Li, Dake ; Cao, Jian ; Wei, Wei ; Wu, Yafeng ; Liu, Songqin</creator><creatorcontrib>Zhou, Sisi ; Hu, Tao ; Zhang, Fen ; Tang, Dezhi ; Li, Dake ; Cao, Jian ; Wei, Wei ; Wu, Yafeng ; Liu, Songqin</creatorcontrib><description>Extracellular vesicles (EVs) have the potential to be utilized as disease-specific biomarkers. Although strategies for on-chip isolation and detection of EVs have recently been developed, they need preprocessing of clinical samples and are not accurate enough for disease diagnosis just judging by EVs concentration. Here, we designed an integrated microfluidic device named a plasma separation and EV detection (PS-ED) chip for plasma separation, quantification, and high-throughput protein analysis of EVs directly from clinical whole blood samples. The device included two modules (PS and ED module): the PS module was a six-loop microchannel for rapid separation of plasma from clinical whole blood samples under inertial force; the amount of EVs in the separated plasma kept the same value as in the initial blood samples. The module reduced the mechanical damage to the blood cells and thus reduced the interference of debris or cellular contents from damaged cells during EVs detection; the ED module contained four S-channels for quantification and high-throughput protein analysis of EVs; a wide detection range from 2.5 × 102 to 2.5 × 108 particles/μL with a detection limit of 95 particles/μL was obtained. Through simultanously monitoring three proteins (CD81, CD24, and EpCAM) of EVs, the cancer type can be accurately confirmed. Furthermore, clinical blood sample analysis verified that the proposed device could be used for accurate diagnosis and therapy monitoring of ovarian cancer.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/acs.analchem.9b04852</identifier><identifier>PMID: 31779307</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Analytical chemistry ; Biomarkers ; Biomarkers, Tumor - blood ; Blood cells ; Cancer ; CD24 Antigen - blood ; CD81 antigen ; Chemistry ; Damage detection ; Diagnosis ; Epithelial Cell Adhesion Molecule - blood ; Extracellular Vesicles - chemistry ; Humans ; Lab-On-A-Chip Devices ; Microchannels ; Microfluidic devices ; Microfluidics ; Modules ; Monitoring ; Ovarian cancer ; Proteins ; Separation ; Tetraspanin 28 - blood</subject><ispartof>Analytical chemistry (Washington), 2020-01, Vol.92 (1), p.1574-1581</ispartof><rights>Copyright American Chemical Society Jan 7, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a376t-5273eec2f289954254bce7b8a91dabdfbfd8fe57b5a6af3b74407c7737283a513</citedby><cites>FETCH-LOGICAL-a376t-5273eec2f289954254bce7b8a91dabdfbfd8fe57b5a6af3b74407c7737283a513</cites><orcidid>0000-0003-0549-5420 ; 0000-0003-1893-1105 ; 0000-0002-4686-5291</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.analchem.9b04852$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.analchem.9b04852$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2751,27055,27903,27904,56716,56766</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31779307$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhou, Sisi</creatorcontrib><creatorcontrib>Hu, Tao</creatorcontrib><creatorcontrib>Zhang, Fen</creatorcontrib><creatorcontrib>Tang, Dezhi</creatorcontrib><creatorcontrib>Li, Dake</creatorcontrib><creatorcontrib>Cao, Jian</creatorcontrib><creatorcontrib>Wei, Wei</creatorcontrib><creatorcontrib>Wu, Yafeng</creatorcontrib><creatorcontrib>Liu, Songqin</creatorcontrib><title>Integrated Microfluidic Device for Accurate Extracellular Vesicle Quantification and Protein Markers Analysis Directly from Human Whole Blood</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>Extracellular vesicles (EVs) have the potential to be utilized as disease-specific biomarkers. Although strategies for on-chip isolation and detection of EVs have recently been developed, they need preprocessing of clinical samples and are not accurate enough for disease diagnosis just judging by EVs concentration. Here, we designed an integrated microfluidic device named a plasma separation and EV detection (PS-ED) chip for plasma separation, quantification, and high-throughput protein analysis of EVs directly from clinical whole blood samples. The device included two modules (PS and ED module): the PS module was a six-loop microchannel for rapid separation of plasma from clinical whole blood samples under inertial force; the amount of EVs in the separated plasma kept the same value as in the initial blood samples. The module reduced the mechanical damage to the blood cells and thus reduced the interference of debris or cellular contents from damaged cells during EVs detection; the ED module contained four S-channels for quantification and high-throughput protein analysis of EVs; a wide detection range from 2.5 × 102 to 2.5 × 108 particles/μL with a detection limit of 95 particles/μL was obtained. Through simultanously monitoring three proteins (CD81, CD24, and EpCAM) of EVs, the cancer type can be accurately confirmed. Furthermore, clinical blood sample analysis verified that the proposed device could be used for accurate diagnosis and therapy monitoring of ovarian cancer.</description><subject>Analytical chemistry</subject><subject>Biomarkers</subject><subject>Biomarkers, Tumor - blood</subject><subject>Blood cells</subject><subject>Cancer</subject><subject>CD24 Antigen - blood</subject><subject>CD81 antigen</subject><subject>Chemistry</subject><subject>Damage detection</subject><subject>Diagnosis</subject><subject>Epithelial Cell Adhesion Molecule - blood</subject><subject>Extracellular Vesicles - chemistry</subject><subject>Humans</subject><subject>Lab-On-A-Chip Devices</subject><subject>Microchannels</subject><subject>Microfluidic devices</subject><subject>Microfluidics</subject><subject>Modules</subject><subject>Monitoring</subject><subject>Ovarian cancer</subject><subject>Proteins</subject><subject>Separation</subject><subject>Tetraspanin 28 - blood</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kctu1DAUhi0EokPLGyBkiQ2bDL7EcbIc2kIrtYJKLSyjE-eYuiRx6wtiHoJ3JtFMu2DB6my-__c5_gh5w9maM8E_gIlrmGAwtzium46VtRLPyIorwYqqrsVzsmKMyUJoxg7IqxjvGOOc8eolOZBc60YyvSJ_zqeEPwIk7OmlM8HbIbveGXqCv5xBan2gG2PyQtDT3ymAwWHIAwT6DaMzA9KrDFNy1hlIzk8Upp5-DT6hm-glhJ8YIt3Me26ji_TEBTRp2FIb_EjP8ggT_X7r55aPg_f9EXlhYYj4ej8Pyc2n0-vjs-Liy-fz481FAVJXqVBCS0QjrKibRpVClZ1B3dXQ8B663na2ry0q3SmowMpOlyXTRmupRS1BcXlI3u9674N_yBhTO7q4HAYT-hxbIQWTWtdazei7f9A7n8N8z0JJVVVVWYqZKnfU_IMxBrTtfXAjhG3LWbvoamdd7aOudq9rjr3dl-duxP4p9OhnBtgOWOJPD_-38y8rn6aY</recordid><startdate>20200107</startdate><enddate>20200107</enddate><creator>Zhou, Sisi</creator><creator>Hu, Tao</creator><creator>Zhang, Fen</creator><creator>Tang, Dezhi</creator><creator>Li, Dake</creator><creator>Cao, Jian</creator><creator>Wei, Wei</creator><creator>Wu, Yafeng</creator><creator>Liu, Songqin</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0549-5420</orcidid><orcidid>https://orcid.org/0000-0003-1893-1105</orcidid><orcidid>https://orcid.org/0000-0002-4686-5291</orcidid></search><sort><creationdate>20200107</creationdate><title>Integrated Microfluidic Device for Accurate Extracellular Vesicle Quantification and Protein Markers Analysis Directly from Human Whole Blood</title><author>Zhou, Sisi ; Hu, Tao ; Zhang, Fen ; Tang, Dezhi ; Li, Dake ; Cao, Jian ; Wei, Wei ; Wu, Yafeng ; Liu, Songqin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a376t-5273eec2f289954254bce7b8a91dabdfbfd8fe57b5a6af3b74407c7737283a513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Analytical chemistry</topic><topic>Biomarkers</topic><topic>Biomarkers, Tumor - blood</topic><topic>Blood cells</topic><topic>Cancer</topic><topic>CD24 Antigen - blood</topic><topic>CD81 antigen</topic><topic>Chemistry</topic><topic>Damage detection</topic><topic>Diagnosis</topic><topic>Epithelial Cell Adhesion Molecule - blood</topic><topic>Extracellular Vesicles - chemistry</topic><topic>Humans</topic><topic>Lab-On-A-Chip Devices</topic><topic>Microchannels</topic><topic>Microfluidic devices</topic><topic>Microfluidics</topic><topic>Modules</topic><topic>Monitoring</topic><topic>Ovarian cancer</topic><topic>Proteins</topic><topic>Separation</topic><topic>Tetraspanin 28 - blood</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Sisi</creatorcontrib><creatorcontrib>Hu, Tao</creatorcontrib><creatorcontrib>Zhang, Fen</creatorcontrib><creatorcontrib>Tang, Dezhi</creatorcontrib><creatorcontrib>Li, Dake</creatorcontrib><creatorcontrib>Cao, Jian</creatorcontrib><creatorcontrib>Wei, Wei</creatorcontrib><creatorcontrib>Wu, Yafeng</creatorcontrib><creatorcontrib>Liu, Songqin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Sisi</au><au>Hu, Tao</au><au>Zhang, Fen</au><au>Tang, Dezhi</au><au>Li, Dake</au><au>Cao, Jian</au><au>Wei, Wei</au><au>Wu, Yafeng</au><au>Liu, Songqin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integrated Microfluidic Device for Accurate Extracellular Vesicle Quantification and Protein Markers Analysis Directly from Human Whole Blood</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2020-01-07</date><risdate>2020</risdate><volume>92</volume><issue>1</issue><spage>1574</spage><epage>1581</epage><pages>1574-1581</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><abstract>Extracellular vesicles (EVs) have the potential to be utilized as disease-specific biomarkers. Although strategies for on-chip isolation and detection of EVs have recently been developed, they need preprocessing of clinical samples and are not accurate enough for disease diagnosis just judging by EVs concentration. Here, we designed an integrated microfluidic device named a plasma separation and EV detection (PS-ED) chip for plasma separation, quantification, and high-throughput protein analysis of EVs directly from clinical whole blood samples. The device included two modules (PS and ED module): the PS module was a six-loop microchannel for rapid separation of plasma from clinical whole blood samples under inertial force; the amount of EVs in the separated plasma kept the same value as in the initial blood samples. The module reduced the mechanical damage to the blood cells and thus reduced the interference of debris or cellular contents from damaged cells during EVs detection; the ED module contained four S-channels for quantification and high-throughput protein analysis of EVs; a wide detection range from 2.5 × 102 to 2.5 × 108 particles/μL with a detection limit of 95 particles/μL was obtained. Through simultanously monitoring three proteins (CD81, CD24, and EpCAM) of EVs, the cancer type can be accurately confirmed. Furthermore, clinical blood sample analysis verified that the proposed device could be used for accurate diagnosis and therapy monitoring of ovarian cancer.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>31779307</pmid><doi>10.1021/acs.analchem.9b04852</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-0549-5420</orcidid><orcidid>https://orcid.org/0000-0003-1893-1105</orcidid><orcidid>https://orcid.org/0000-0002-4686-5291</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-2700 |
ispartof | Analytical chemistry (Washington), 2020-01, Vol.92 (1), p.1574-1581 |
issn | 0003-2700 1520-6882 |
language | eng |
recordid | cdi_proquest_miscellaneous_2320377875 |
source | MEDLINE; ACS Publications |
subjects | Analytical chemistry Biomarkers Biomarkers, Tumor - blood Blood cells Cancer CD24 Antigen - blood CD81 antigen Chemistry Damage detection Diagnosis Epithelial Cell Adhesion Molecule - blood Extracellular Vesicles - chemistry Humans Lab-On-A-Chip Devices Microchannels Microfluidic devices Microfluidics Modules Monitoring Ovarian cancer Proteins Separation Tetraspanin 28 - blood |
title | Integrated Microfluidic Device for Accurate Extracellular Vesicle Quantification and Protein Markers Analysis Directly from Human Whole Blood |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T19%3A21%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integrated%20Microfluidic%20Device%20for%20Accurate%20Extracellular%20Vesicle%20Quantification%20and%20Protein%20Markers%20Analysis%20Directly%20from%20Human%20Whole%20Blood&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Zhou,%20Sisi&rft.date=2020-01-07&rft.volume=92&rft.issue=1&rft.spage=1574&rft.epage=1581&rft.pages=1574-1581&rft.issn=0003-2700&rft.eissn=1520-6882&rft_id=info:doi/10.1021/acs.analchem.9b04852&rft_dat=%3Cproquest_cross%3E2335666442%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2335666442&rft_id=info:pmid/31779307&rfr_iscdi=true |