Integrated Microfluidic Device for Accurate Extracellular Vesicle Quantification and Protein Markers Analysis Directly from Human Whole Blood

Extracellular vesicles (EVs) have the potential to be utilized as disease-specific biomarkers. Although strategies for on-chip isolation and detection of EVs have recently been developed, they need preprocessing of clinical samples and are not accurate enough for disease diagnosis just judging by EV...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2020-01, Vol.92 (1), p.1574-1581
Hauptverfasser: Zhou, Sisi, Hu, Tao, Zhang, Fen, Tang, Dezhi, Li, Dake, Cao, Jian, Wei, Wei, Wu, Yafeng, Liu, Songqin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1581
container_issue 1
container_start_page 1574
container_title Analytical chemistry (Washington)
container_volume 92
creator Zhou, Sisi
Hu, Tao
Zhang, Fen
Tang, Dezhi
Li, Dake
Cao, Jian
Wei, Wei
Wu, Yafeng
Liu, Songqin
description Extracellular vesicles (EVs) have the potential to be utilized as disease-specific biomarkers. Although strategies for on-chip isolation and detection of EVs have recently been developed, they need preprocessing of clinical samples and are not accurate enough for disease diagnosis just judging by EVs concentration. Here, we designed an integrated microfluidic device named a plasma separation and EV detection (PS-ED) chip for plasma separation, quantification, and high-throughput protein analysis of EVs directly from clinical whole blood samples. The device included two modules (PS and ED module): the PS module was a six-loop microchannel for rapid separation of plasma from clinical whole blood samples under inertial force; the amount of EVs in the separated plasma kept the same value as in the initial blood samples. The module reduced the mechanical damage to the blood cells and thus reduced the interference of debris or cellular contents from damaged cells during EVs detection; the ED module contained four S-channels for quantification and high-throughput protein analysis of EVs; a wide detection range from 2.5 × 102 to 2.5 × 108 particles/μL with a detection limit of 95 particles/μL was obtained. Through simultanously monitoring three proteins (CD81, CD24, and EpCAM) of EVs, the cancer type can be accurately confirmed. Furthermore, clinical blood sample analysis verified that the proposed device could be used for accurate diagnosis and therapy monitoring of ovarian cancer.
doi_str_mv 10.1021/acs.analchem.9b04852
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2320377875</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2335666442</sourcerecordid><originalsourceid>FETCH-LOGICAL-a376t-5273eec2f289954254bce7b8a91dabdfbfd8fe57b5a6af3b74407c7737283a513</originalsourceid><addsrcrecordid>eNp9kctu1DAUhi0EokPLGyBkiQ2bDL7EcbIc2kIrtYJKLSyjE-eYuiRx6wtiHoJ3JtFMu2DB6my-__c5_gh5w9maM8E_gIlrmGAwtzium46VtRLPyIorwYqqrsVzsmKMyUJoxg7IqxjvGOOc8eolOZBc60YyvSJ_zqeEPwIk7OmlM8HbIbveGXqCv5xBan2gG2PyQtDT3ymAwWHIAwT6DaMzA9KrDFNy1hlIzk8Upp5-DT6hm-glhJ8YIt3Me26ji_TEBTRp2FIb_EjP8ggT_X7r55aPg_f9EXlhYYj4ej8Pyc2n0-vjs-Liy-fz481FAVJXqVBCS0QjrKibRpVClZ1B3dXQ8B663na2ry0q3SmowMpOlyXTRmupRS1BcXlI3u9674N_yBhTO7q4HAYT-hxbIQWTWtdazei7f9A7n8N8z0JJVVVVWYqZKnfU_IMxBrTtfXAjhG3LWbvoamdd7aOudq9rjr3dl-duxP4p9OhnBtgOWOJPD_-38y8rn6aY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2335666442</pqid></control><display><type>article</type><title>Integrated Microfluidic Device for Accurate Extracellular Vesicle Quantification and Protein Markers Analysis Directly from Human Whole Blood</title><source>MEDLINE</source><source>ACS Publications</source><creator>Zhou, Sisi ; Hu, Tao ; Zhang, Fen ; Tang, Dezhi ; Li, Dake ; Cao, Jian ; Wei, Wei ; Wu, Yafeng ; Liu, Songqin</creator><creatorcontrib>Zhou, Sisi ; Hu, Tao ; Zhang, Fen ; Tang, Dezhi ; Li, Dake ; Cao, Jian ; Wei, Wei ; Wu, Yafeng ; Liu, Songqin</creatorcontrib><description>Extracellular vesicles (EVs) have the potential to be utilized as disease-specific biomarkers. Although strategies for on-chip isolation and detection of EVs have recently been developed, they need preprocessing of clinical samples and are not accurate enough for disease diagnosis just judging by EVs concentration. Here, we designed an integrated microfluidic device named a plasma separation and EV detection (PS-ED) chip for plasma separation, quantification, and high-throughput protein analysis of EVs directly from clinical whole blood samples. The device included two modules (PS and ED module): the PS module was a six-loop microchannel for rapid separation of plasma from clinical whole blood samples under inertial force; the amount of EVs in the separated plasma kept the same value as in the initial blood samples. The module reduced the mechanical damage to the blood cells and thus reduced the interference of debris or cellular contents from damaged cells during EVs detection; the ED module contained four S-channels for quantification and high-throughput protein analysis of EVs; a wide detection range from 2.5 × 102 to 2.5 × 108 particles/μL with a detection limit of 95 particles/μL was obtained. Through simultanously monitoring three proteins (CD81, CD24, and EpCAM) of EVs, the cancer type can be accurately confirmed. Furthermore, clinical blood sample analysis verified that the proposed device could be used for accurate diagnosis and therapy monitoring of ovarian cancer.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/acs.analchem.9b04852</identifier><identifier>PMID: 31779307</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Analytical chemistry ; Biomarkers ; Biomarkers, Tumor - blood ; Blood cells ; Cancer ; CD24 Antigen - blood ; CD81 antigen ; Chemistry ; Damage detection ; Diagnosis ; Epithelial Cell Adhesion Molecule - blood ; Extracellular Vesicles - chemistry ; Humans ; Lab-On-A-Chip Devices ; Microchannels ; Microfluidic devices ; Microfluidics ; Modules ; Monitoring ; Ovarian cancer ; Proteins ; Separation ; Tetraspanin 28 - blood</subject><ispartof>Analytical chemistry (Washington), 2020-01, Vol.92 (1), p.1574-1581</ispartof><rights>Copyright American Chemical Society Jan 7, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a376t-5273eec2f289954254bce7b8a91dabdfbfd8fe57b5a6af3b74407c7737283a513</citedby><cites>FETCH-LOGICAL-a376t-5273eec2f289954254bce7b8a91dabdfbfd8fe57b5a6af3b74407c7737283a513</cites><orcidid>0000-0003-0549-5420 ; 0000-0003-1893-1105 ; 0000-0002-4686-5291</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.analchem.9b04852$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.analchem.9b04852$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2751,27055,27903,27904,56716,56766</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31779307$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhou, Sisi</creatorcontrib><creatorcontrib>Hu, Tao</creatorcontrib><creatorcontrib>Zhang, Fen</creatorcontrib><creatorcontrib>Tang, Dezhi</creatorcontrib><creatorcontrib>Li, Dake</creatorcontrib><creatorcontrib>Cao, Jian</creatorcontrib><creatorcontrib>Wei, Wei</creatorcontrib><creatorcontrib>Wu, Yafeng</creatorcontrib><creatorcontrib>Liu, Songqin</creatorcontrib><title>Integrated Microfluidic Device for Accurate Extracellular Vesicle Quantification and Protein Markers Analysis Directly from Human Whole Blood</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>Extracellular vesicles (EVs) have the potential to be utilized as disease-specific biomarkers. Although strategies for on-chip isolation and detection of EVs have recently been developed, they need preprocessing of clinical samples and are not accurate enough for disease diagnosis just judging by EVs concentration. Here, we designed an integrated microfluidic device named a plasma separation and EV detection (PS-ED) chip for plasma separation, quantification, and high-throughput protein analysis of EVs directly from clinical whole blood samples. The device included two modules (PS and ED module): the PS module was a six-loop microchannel for rapid separation of plasma from clinical whole blood samples under inertial force; the amount of EVs in the separated plasma kept the same value as in the initial blood samples. The module reduced the mechanical damage to the blood cells and thus reduced the interference of debris or cellular contents from damaged cells during EVs detection; the ED module contained four S-channels for quantification and high-throughput protein analysis of EVs; a wide detection range from 2.5 × 102 to 2.5 × 108 particles/μL with a detection limit of 95 particles/μL was obtained. Through simultanously monitoring three proteins (CD81, CD24, and EpCAM) of EVs, the cancer type can be accurately confirmed. Furthermore, clinical blood sample analysis verified that the proposed device could be used for accurate diagnosis and therapy monitoring of ovarian cancer.</description><subject>Analytical chemistry</subject><subject>Biomarkers</subject><subject>Biomarkers, Tumor - blood</subject><subject>Blood cells</subject><subject>Cancer</subject><subject>CD24 Antigen - blood</subject><subject>CD81 antigen</subject><subject>Chemistry</subject><subject>Damage detection</subject><subject>Diagnosis</subject><subject>Epithelial Cell Adhesion Molecule - blood</subject><subject>Extracellular Vesicles - chemistry</subject><subject>Humans</subject><subject>Lab-On-A-Chip Devices</subject><subject>Microchannels</subject><subject>Microfluidic devices</subject><subject>Microfluidics</subject><subject>Modules</subject><subject>Monitoring</subject><subject>Ovarian cancer</subject><subject>Proteins</subject><subject>Separation</subject><subject>Tetraspanin 28 - blood</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kctu1DAUhi0EokPLGyBkiQ2bDL7EcbIc2kIrtYJKLSyjE-eYuiRx6wtiHoJ3JtFMu2DB6my-__c5_gh5w9maM8E_gIlrmGAwtzium46VtRLPyIorwYqqrsVzsmKMyUJoxg7IqxjvGOOc8eolOZBc60YyvSJ_zqeEPwIk7OmlM8HbIbveGXqCv5xBan2gG2PyQtDT3ymAwWHIAwT6DaMzA9KrDFNy1hlIzk8Upp5-DT6hm-glhJ8YIt3Me26ji_TEBTRp2FIb_EjP8ggT_X7r55aPg_f9EXlhYYj4ej8Pyc2n0-vjs-Liy-fz481FAVJXqVBCS0QjrKibRpVClZ1B3dXQ8B663na2ry0q3SmowMpOlyXTRmupRS1BcXlI3u9674N_yBhTO7q4HAYT-hxbIQWTWtdazei7f9A7n8N8z0JJVVVVWYqZKnfU_IMxBrTtfXAjhG3LWbvoamdd7aOudq9rjr3dl-duxP4p9OhnBtgOWOJPD_-38y8rn6aY</recordid><startdate>20200107</startdate><enddate>20200107</enddate><creator>Zhou, Sisi</creator><creator>Hu, Tao</creator><creator>Zhang, Fen</creator><creator>Tang, Dezhi</creator><creator>Li, Dake</creator><creator>Cao, Jian</creator><creator>Wei, Wei</creator><creator>Wu, Yafeng</creator><creator>Liu, Songqin</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0549-5420</orcidid><orcidid>https://orcid.org/0000-0003-1893-1105</orcidid><orcidid>https://orcid.org/0000-0002-4686-5291</orcidid></search><sort><creationdate>20200107</creationdate><title>Integrated Microfluidic Device for Accurate Extracellular Vesicle Quantification and Protein Markers Analysis Directly from Human Whole Blood</title><author>Zhou, Sisi ; Hu, Tao ; Zhang, Fen ; Tang, Dezhi ; Li, Dake ; Cao, Jian ; Wei, Wei ; Wu, Yafeng ; Liu, Songqin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a376t-5273eec2f289954254bce7b8a91dabdfbfd8fe57b5a6af3b74407c7737283a513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Analytical chemistry</topic><topic>Biomarkers</topic><topic>Biomarkers, Tumor - blood</topic><topic>Blood cells</topic><topic>Cancer</topic><topic>CD24 Antigen - blood</topic><topic>CD81 antigen</topic><topic>Chemistry</topic><topic>Damage detection</topic><topic>Diagnosis</topic><topic>Epithelial Cell Adhesion Molecule - blood</topic><topic>Extracellular Vesicles - chemistry</topic><topic>Humans</topic><topic>Lab-On-A-Chip Devices</topic><topic>Microchannels</topic><topic>Microfluidic devices</topic><topic>Microfluidics</topic><topic>Modules</topic><topic>Monitoring</topic><topic>Ovarian cancer</topic><topic>Proteins</topic><topic>Separation</topic><topic>Tetraspanin 28 - blood</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Sisi</creatorcontrib><creatorcontrib>Hu, Tao</creatorcontrib><creatorcontrib>Zhang, Fen</creatorcontrib><creatorcontrib>Tang, Dezhi</creatorcontrib><creatorcontrib>Li, Dake</creatorcontrib><creatorcontrib>Cao, Jian</creatorcontrib><creatorcontrib>Wei, Wei</creatorcontrib><creatorcontrib>Wu, Yafeng</creatorcontrib><creatorcontrib>Liu, Songqin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Sisi</au><au>Hu, Tao</au><au>Zhang, Fen</au><au>Tang, Dezhi</au><au>Li, Dake</au><au>Cao, Jian</au><au>Wei, Wei</au><au>Wu, Yafeng</au><au>Liu, Songqin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integrated Microfluidic Device for Accurate Extracellular Vesicle Quantification and Protein Markers Analysis Directly from Human Whole Blood</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2020-01-07</date><risdate>2020</risdate><volume>92</volume><issue>1</issue><spage>1574</spage><epage>1581</epage><pages>1574-1581</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><abstract>Extracellular vesicles (EVs) have the potential to be utilized as disease-specific biomarkers. Although strategies for on-chip isolation and detection of EVs have recently been developed, they need preprocessing of clinical samples and are not accurate enough for disease diagnosis just judging by EVs concentration. Here, we designed an integrated microfluidic device named a plasma separation and EV detection (PS-ED) chip for plasma separation, quantification, and high-throughput protein analysis of EVs directly from clinical whole blood samples. The device included two modules (PS and ED module): the PS module was a six-loop microchannel for rapid separation of plasma from clinical whole blood samples under inertial force; the amount of EVs in the separated plasma kept the same value as in the initial blood samples. The module reduced the mechanical damage to the blood cells and thus reduced the interference of debris or cellular contents from damaged cells during EVs detection; the ED module contained four S-channels for quantification and high-throughput protein analysis of EVs; a wide detection range from 2.5 × 102 to 2.5 × 108 particles/μL with a detection limit of 95 particles/μL was obtained. Through simultanously monitoring three proteins (CD81, CD24, and EpCAM) of EVs, the cancer type can be accurately confirmed. Furthermore, clinical blood sample analysis verified that the proposed device could be used for accurate diagnosis and therapy monitoring of ovarian cancer.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>31779307</pmid><doi>10.1021/acs.analchem.9b04852</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-0549-5420</orcidid><orcidid>https://orcid.org/0000-0003-1893-1105</orcidid><orcidid>https://orcid.org/0000-0002-4686-5291</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0003-2700
ispartof Analytical chemistry (Washington), 2020-01, Vol.92 (1), p.1574-1581
issn 0003-2700
1520-6882
language eng
recordid cdi_proquest_miscellaneous_2320377875
source MEDLINE; ACS Publications
subjects Analytical chemistry
Biomarkers
Biomarkers, Tumor - blood
Blood cells
Cancer
CD24 Antigen - blood
CD81 antigen
Chemistry
Damage detection
Diagnosis
Epithelial Cell Adhesion Molecule - blood
Extracellular Vesicles - chemistry
Humans
Lab-On-A-Chip Devices
Microchannels
Microfluidic devices
Microfluidics
Modules
Monitoring
Ovarian cancer
Proteins
Separation
Tetraspanin 28 - blood
title Integrated Microfluidic Device for Accurate Extracellular Vesicle Quantification and Protein Markers Analysis Directly from Human Whole Blood
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T19%3A21%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integrated%20Microfluidic%20Device%20for%20Accurate%20Extracellular%20Vesicle%20Quantification%20and%20Protein%20Markers%20Analysis%20Directly%20from%20Human%20Whole%20Blood&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Zhou,%20Sisi&rft.date=2020-01-07&rft.volume=92&rft.issue=1&rft.spage=1574&rft.epage=1581&rft.pages=1574-1581&rft.issn=0003-2700&rft.eissn=1520-6882&rft_id=info:doi/10.1021/acs.analchem.9b04852&rft_dat=%3Cproquest_cross%3E2335666442%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2335666442&rft_id=info:pmid/31779307&rfr_iscdi=true