Gravitational radiation reaction in the binary pulsar and the quadrupole-formula controversy

The orbital motion of a binary pulsar system is investigated analytically. The two-body problem is reduced to a one-body problem, which is solved while terms of the order c to the -5th are disregarded; then the full problem is solved to the order G cubed by the variation of arbitrary constants, an a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 1983-01, Vol.51 (12), p.1019-1025
1. Verfasser: DAMOUR, T
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1025
container_issue 12
container_start_page 1019
container_title Physical review letters
container_volume 51
creator DAMOUR, T
description The orbital motion of a binary pulsar system is investigated analytically. The two-body problem is reduced to a one-body problem, which is solved while terms of the order c to the -5th are disregarded; then the full problem is solved to the order G cubed by the variation of arbitrary constants, an aproach based on earlier work by Bel et al. (1981), Damour and Deruelle (1981), and Damour (1982, 1983). The isolated Schwarzschild mass' of each compact object is employed, rather than the integral of a Newtonian density, and the derivation does not involve quadrupole moment, energy flux at infinity, balance equations, energy, angular momentum, or radiation-damping force. No acceleration of the system center of mass is found, and the quantitative calculations of the secular decrease in the periastron-return time are shown to agree with the 'quadrupole formula' and with the secular acceleration of the orbital motion of PSR 1913+16 observed by Taylor et al. (1979).
doi_str_mv 10.1103/PhysRevLett.51.1019
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_23199811</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>23199811</sourcerecordid><originalsourceid>FETCH-LOGICAL-c309t-52b8e0954407dd662522ed95c6db30e8853c9bcd7b0c4fe45a3b830038c9c45a3</originalsourceid><addsrcrecordid>eNpNUE1LxDAUDKLguvoLvPQg3rq-NE3bHGXRVVhQRG9CeE1SNpJtu0m6sP_e7gfi6c0bZgZmCLmlMKMU2MP7ahc-zHZpYpxxOqNAxRmZUChFWlKan5MJAKOpACgvyVUIPwBAs6KakO-Fx62NGG3Xoks8anvAiTeoDsC2SVyZpLYt-l3SDy6gT7DVB3YzoPZD3zmTNp1fDw4T1bXRd1vjw-6aXDTogrk53Sn5en76nL-ky7fF6_xxmSoGIqY8qysDguc5lFoXRcazzGjBVaFrBqaqOFOiVrqsQeWNyTmyumJjo0oJtf-m5P6Y2_tuM5gQ5doGZZzD1nRDkBmjQlSUjkJ2FCrfheBNI3tv12MvSUHul5T_lpScyv2So-vuFI9BoWs8tsqGP6tgZZlnnP0CXKp4rQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>23199811</pqid></control><display><type>article</type><title>Gravitational radiation reaction in the binary pulsar and the quadrupole-formula controversy</title><source>American Physical Society Journals</source><creator>DAMOUR, T</creator><creatorcontrib>DAMOUR, T</creatorcontrib><description>The orbital motion of a binary pulsar system is investigated analytically. The two-body problem is reduced to a one-body problem, which is solved while terms of the order c to the -5th are disregarded; then the full problem is solved to the order G cubed by the variation of arbitrary constants, an aproach based on earlier work by Bel et al. (1981), Damour and Deruelle (1981), and Damour (1982, 1983). The isolated Schwarzschild mass' of each compact object is employed, rather than the integral of a Newtonian density, and the derivation does not involve quadrupole moment, energy flux at infinity, balance equations, energy, angular momentum, or radiation-damping force. No acceleration of the system center of mass is found, and the quantitative calculations of the secular decrease in the periastron-return time are shown to agree with the 'quadrupole formula' and with the secular acceleration of the orbital motion of PSR 1913+16 observed by Taylor et al. (1979).</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.51.1019</identifier><identifier>CODEN: PRLTAO</identifier><language>eng</language><publisher>Ridge, NY: American Physical Society</publisher><subject>Exact sciences and technology ; General relativity and gravitation ; Gravitational waves: theory ; Physics</subject><ispartof>Physical review letters, 1983-01, Vol.51 (12), p.1019-1025</ispartof><rights>1984 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c309t-52b8e0954407dd662522ed95c6db30e8853c9bcd7b0c4fe45a3b830038c9c45a3</citedby><cites>FETCH-LOGICAL-c309t-52b8e0954407dd662522ed95c6db30e8853c9bcd7b0c4fe45a3b830038c9c45a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2863,2864,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=9377425$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>DAMOUR, T</creatorcontrib><title>Gravitational radiation reaction in the binary pulsar and the quadrupole-formula controversy</title><title>Physical review letters</title><description>The orbital motion of a binary pulsar system is investigated analytically. The two-body problem is reduced to a one-body problem, which is solved while terms of the order c to the -5th are disregarded; then the full problem is solved to the order G cubed by the variation of arbitrary constants, an aproach based on earlier work by Bel et al. (1981), Damour and Deruelle (1981), and Damour (1982, 1983). The isolated Schwarzschild mass' of each compact object is employed, rather than the integral of a Newtonian density, and the derivation does not involve quadrupole moment, energy flux at infinity, balance equations, energy, angular momentum, or radiation-damping force. No acceleration of the system center of mass is found, and the quantitative calculations of the secular decrease in the periastron-return time are shown to agree with the 'quadrupole formula' and with the secular acceleration of the orbital motion of PSR 1913+16 observed by Taylor et al. (1979).</description><subject>Exact sciences and technology</subject><subject>General relativity and gravitation</subject><subject>Gravitational waves: theory</subject><subject>Physics</subject><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1983</creationdate><recordtype>article</recordtype><recordid>eNpNUE1LxDAUDKLguvoLvPQg3rq-NE3bHGXRVVhQRG9CeE1SNpJtu0m6sP_e7gfi6c0bZgZmCLmlMKMU2MP7ahc-zHZpYpxxOqNAxRmZUChFWlKan5MJAKOpACgvyVUIPwBAs6KakO-Fx62NGG3Xoks8anvAiTeoDsC2SVyZpLYt-l3SDy6gT7DVB3YzoPZD3zmTNp1fDw4T1bXRd1vjw-6aXDTogrk53Sn5en76nL-ky7fF6_xxmSoGIqY8qysDguc5lFoXRcazzGjBVaFrBqaqOFOiVrqsQeWNyTmyumJjo0oJtf-m5P6Y2_tuM5gQ5doGZZzD1nRDkBmjQlSUjkJ2FCrfheBNI3tv12MvSUHul5T_lpScyv2So-vuFI9BoWs8tsqGP6tgZZlnnP0CXKp4rQ</recordid><startdate>19830101</startdate><enddate>19830101</enddate><creator>DAMOUR, T</creator><general>American Physical Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>19830101</creationdate><title>Gravitational radiation reaction in the binary pulsar and the quadrupole-formula controversy</title><author>DAMOUR, T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c309t-52b8e0954407dd662522ed95c6db30e8853c9bcd7b0c4fe45a3b830038c9c45a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1983</creationdate><topic>Exact sciences and technology</topic><topic>General relativity and gravitation</topic><topic>Gravitational waves: theory</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>DAMOUR, T</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>DAMOUR, T</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gravitational radiation reaction in the binary pulsar and the quadrupole-formula controversy</atitle><jtitle>Physical review letters</jtitle><date>1983-01-01</date><risdate>1983</risdate><volume>51</volume><issue>12</issue><spage>1019</spage><epage>1025</epage><pages>1019-1025</pages><issn>0031-9007</issn><eissn>1079-7114</eissn><coden>PRLTAO</coden><abstract>The orbital motion of a binary pulsar system is investigated analytically. The two-body problem is reduced to a one-body problem, which is solved while terms of the order c to the -5th are disregarded; then the full problem is solved to the order G cubed by the variation of arbitrary constants, an aproach based on earlier work by Bel et al. (1981), Damour and Deruelle (1981), and Damour (1982, 1983). The isolated Schwarzschild mass' of each compact object is employed, rather than the integral of a Newtonian density, and the derivation does not involve quadrupole moment, energy flux at infinity, balance equations, energy, angular momentum, or radiation-damping force. No acceleration of the system center of mass is found, and the quantitative calculations of the secular decrease in the periastron-return time are shown to agree with the 'quadrupole formula' and with the secular acceleration of the orbital motion of PSR 1913+16 observed by Taylor et al. (1979).</abstract><cop>Ridge, NY</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevLett.51.1019</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0031-9007
ispartof Physical review letters, 1983-01, Vol.51 (12), p.1019-1025
issn 0031-9007
1079-7114
language eng
recordid cdi_proquest_miscellaneous_23199811
source American Physical Society Journals
subjects Exact sciences and technology
General relativity and gravitation
Gravitational waves: theory
Physics
title Gravitational radiation reaction in the binary pulsar and the quadrupole-formula controversy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T09%3A33%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gravitational%20radiation%20reaction%20in%20the%20binary%20pulsar%20and%20the%20quadrupole-formula%20controversy&rft.jtitle=Physical%20review%20letters&rft.au=DAMOUR,%20T&rft.date=1983-01-01&rft.volume=51&rft.issue=12&rft.spage=1019&rft.epage=1025&rft.pages=1019-1025&rft.issn=0031-9007&rft.eissn=1079-7114&rft.coden=PRLTAO&rft_id=info:doi/10.1103/PhysRevLett.51.1019&rft_dat=%3Cproquest_cross%3E23199811%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=23199811&rft_id=info:pmid/&rfr_iscdi=true