Gravitational radiation reaction in the binary pulsar and the quadrupole-formula controversy
The orbital motion of a binary pulsar system is investigated analytically. The two-body problem is reduced to a one-body problem, which is solved while terms of the order c to the -5th are disregarded; then the full problem is solved to the order G cubed by the variation of arbitrary constants, an a...
Gespeichert in:
Veröffentlicht in: | Physical review letters 1983-01, Vol.51 (12), p.1019-1025 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1025 |
---|---|
container_issue | 12 |
container_start_page | 1019 |
container_title | Physical review letters |
container_volume | 51 |
creator | DAMOUR, T |
description | The orbital motion of a binary pulsar system is investigated analytically. The two-body problem is reduced to a one-body problem, which is solved while terms of the order c to the -5th are disregarded; then the full problem is solved to the order G cubed by the variation of arbitrary constants, an aproach based on earlier work by Bel et al. (1981), Damour and Deruelle (1981), and Damour (1982, 1983). The isolated Schwarzschild mass' of each compact object is employed, rather than the integral of a Newtonian density, and the derivation does not involve quadrupole moment, energy flux at infinity, balance equations, energy, angular momentum, or radiation-damping force. No acceleration of the system center of mass is found, and the quantitative calculations of the secular decrease in the periastron-return time are shown to agree with the 'quadrupole formula' and with the secular acceleration of the orbital motion of PSR 1913+16 observed by Taylor et al. (1979). |
doi_str_mv | 10.1103/PhysRevLett.51.1019 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_23199811</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>23199811</sourcerecordid><originalsourceid>FETCH-LOGICAL-c309t-52b8e0954407dd662522ed95c6db30e8853c9bcd7b0c4fe45a3b830038c9c45a3</originalsourceid><addsrcrecordid>eNpNUE1LxDAUDKLguvoLvPQg3rq-NE3bHGXRVVhQRG9CeE1SNpJtu0m6sP_e7gfi6c0bZgZmCLmlMKMU2MP7ahc-zHZpYpxxOqNAxRmZUChFWlKan5MJAKOpACgvyVUIPwBAs6KakO-Fx62NGG3Xoks8anvAiTeoDsC2SVyZpLYt-l3SDy6gT7DVB3YzoPZD3zmTNp1fDw4T1bXRd1vjw-6aXDTogrk53Sn5en76nL-ky7fF6_xxmSoGIqY8qysDguc5lFoXRcazzGjBVaFrBqaqOFOiVrqsQeWNyTmyumJjo0oJtf-m5P6Y2_tuM5gQ5doGZZzD1nRDkBmjQlSUjkJ2FCrfheBNI3tv12MvSUHul5T_lpScyv2So-vuFI9BoWs8tsqGP6tgZZlnnP0CXKp4rQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>23199811</pqid></control><display><type>article</type><title>Gravitational radiation reaction in the binary pulsar and the quadrupole-formula controversy</title><source>American Physical Society Journals</source><creator>DAMOUR, T</creator><creatorcontrib>DAMOUR, T</creatorcontrib><description>The orbital motion of a binary pulsar system is investigated analytically. The two-body problem is reduced to a one-body problem, which is solved while terms of the order c to the -5th are disregarded; then the full problem is solved to the order G cubed by the variation of arbitrary constants, an aproach based on earlier work by Bel et al. (1981), Damour and Deruelle (1981), and Damour (1982, 1983). The isolated Schwarzschild mass' of each compact object is employed, rather than the integral of a Newtonian density, and the derivation does not involve quadrupole moment, energy flux at infinity, balance equations, energy, angular momentum, or radiation-damping force. No acceleration of the system center of mass is found, and the quantitative calculations of the secular decrease in the periastron-return time are shown to agree with the 'quadrupole formula' and with the secular acceleration of the orbital motion of PSR 1913+16 observed by Taylor et al. (1979).</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.51.1019</identifier><identifier>CODEN: PRLTAO</identifier><language>eng</language><publisher>Ridge, NY: American Physical Society</publisher><subject>Exact sciences and technology ; General relativity and gravitation ; Gravitational waves: theory ; Physics</subject><ispartof>Physical review letters, 1983-01, Vol.51 (12), p.1019-1025</ispartof><rights>1984 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c309t-52b8e0954407dd662522ed95c6db30e8853c9bcd7b0c4fe45a3b830038c9c45a3</citedby><cites>FETCH-LOGICAL-c309t-52b8e0954407dd662522ed95c6db30e8853c9bcd7b0c4fe45a3b830038c9c45a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2863,2864,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=9377425$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>DAMOUR, T</creatorcontrib><title>Gravitational radiation reaction in the binary pulsar and the quadrupole-formula controversy</title><title>Physical review letters</title><description>The orbital motion of a binary pulsar system is investigated analytically. The two-body problem is reduced to a one-body problem, which is solved while terms of the order c to the -5th are disregarded; then the full problem is solved to the order G cubed by the variation of arbitrary constants, an aproach based on earlier work by Bel et al. (1981), Damour and Deruelle (1981), and Damour (1982, 1983). The isolated Schwarzschild mass' of each compact object is employed, rather than the integral of a Newtonian density, and the derivation does not involve quadrupole moment, energy flux at infinity, balance equations, energy, angular momentum, or radiation-damping force. No acceleration of the system center of mass is found, and the quantitative calculations of the secular decrease in the periastron-return time are shown to agree with the 'quadrupole formula' and with the secular acceleration of the orbital motion of PSR 1913+16 observed by Taylor et al. (1979).</description><subject>Exact sciences and technology</subject><subject>General relativity and gravitation</subject><subject>Gravitational waves: theory</subject><subject>Physics</subject><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1983</creationdate><recordtype>article</recordtype><recordid>eNpNUE1LxDAUDKLguvoLvPQg3rq-NE3bHGXRVVhQRG9CeE1SNpJtu0m6sP_e7gfi6c0bZgZmCLmlMKMU2MP7ahc-zHZpYpxxOqNAxRmZUChFWlKan5MJAKOpACgvyVUIPwBAs6KakO-Fx62NGG3Xoks8anvAiTeoDsC2SVyZpLYt-l3SDy6gT7DVB3YzoPZD3zmTNp1fDw4T1bXRd1vjw-6aXDTogrk53Sn5en76nL-ky7fF6_xxmSoGIqY8qysDguc5lFoXRcazzGjBVaFrBqaqOFOiVrqsQeWNyTmyumJjo0oJtf-m5P6Y2_tuM5gQ5doGZZzD1nRDkBmjQlSUjkJ2FCrfheBNI3tv12MvSUHul5T_lpScyv2So-vuFI9BoWs8tsqGP6tgZZlnnP0CXKp4rQ</recordid><startdate>19830101</startdate><enddate>19830101</enddate><creator>DAMOUR, T</creator><general>American Physical Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>19830101</creationdate><title>Gravitational radiation reaction in the binary pulsar and the quadrupole-formula controversy</title><author>DAMOUR, T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c309t-52b8e0954407dd662522ed95c6db30e8853c9bcd7b0c4fe45a3b830038c9c45a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1983</creationdate><topic>Exact sciences and technology</topic><topic>General relativity and gravitation</topic><topic>Gravitational waves: theory</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>DAMOUR, T</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>DAMOUR, T</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gravitational radiation reaction in the binary pulsar and the quadrupole-formula controversy</atitle><jtitle>Physical review letters</jtitle><date>1983-01-01</date><risdate>1983</risdate><volume>51</volume><issue>12</issue><spage>1019</spage><epage>1025</epage><pages>1019-1025</pages><issn>0031-9007</issn><eissn>1079-7114</eissn><coden>PRLTAO</coden><abstract>The orbital motion of a binary pulsar system is investigated analytically. The two-body problem is reduced to a one-body problem, which is solved while terms of the order c to the -5th are disregarded; then the full problem is solved to the order G cubed by the variation of arbitrary constants, an aproach based on earlier work by Bel et al. (1981), Damour and Deruelle (1981), and Damour (1982, 1983). The isolated Schwarzschild mass' of each compact object is employed, rather than the integral of a Newtonian density, and the derivation does not involve quadrupole moment, energy flux at infinity, balance equations, energy, angular momentum, or radiation-damping force. No acceleration of the system center of mass is found, and the quantitative calculations of the secular decrease in the periastron-return time are shown to agree with the 'quadrupole formula' and with the secular acceleration of the orbital motion of PSR 1913+16 observed by Taylor et al. (1979).</abstract><cop>Ridge, NY</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevLett.51.1019</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-9007 |
ispartof | Physical review letters, 1983-01, Vol.51 (12), p.1019-1025 |
issn | 0031-9007 1079-7114 |
language | eng |
recordid | cdi_proquest_miscellaneous_23199811 |
source | American Physical Society Journals |
subjects | Exact sciences and technology General relativity and gravitation Gravitational waves: theory Physics |
title | Gravitational radiation reaction in the binary pulsar and the quadrupole-formula controversy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T09%3A33%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gravitational%20radiation%20reaction%20in%20the%20binary%20pulsar%20and%20the%20quadrupole-formula%20controversy&rft.jtitle=Physical%20review%20letters&rft.au=DAMOUR,%20T&rft.date=1983-01-01&rft.volume=51&rft.issue=12&rft.spage=1019&rft.epage=1025&rft.pages=1019-1025&rft.issn=0031-9007&rft.eissn=1079-7114&rft.coden=PRLTAO&rft_id=info:doi/10.1103/PhysRevLett.51.1019&rft_dat=%3Cproquest_cross%3E23199811%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=23199811&rft_id=info:pmid/&rfr_iscdi=true |