How the Human Brain Sleeps: Direct Cortical Recordings of Normal Brain Activity
Objective Regional variations in oscillatory activity during human sleep remain unknown. Using the unique ability of intracranial electroencephalography to study in situ brain physiology, this study assesses regional variations of electroencephalographic sleep activity and creates the first atlas of...
Gespeichert in:
Veröffentlicht in: | Annals of neurology 2020-02, Vol.87 (2), p.289-301 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 301 |
---|---|
container_issue | 2 |
container_start_page | 289 |
container_title | Annals of neurology |
container_volume | 87 |
creator | Ellenrieder, Nicolás Gotman, Jean Zelmann, Rina Rogers, Christine Nguyen, Dang Khoa Kahane, Philippe Dubeau, François Frauscher, Birgit |
description | Objective
Regional variations in oscillatory activity during human sleep remain unknown. Using the unique ability of intracranial electroencephalography to study in situ brain physiology, this study assesses regional variations of electroencephalographic sleep activity and creates the first atlas of human sleep using recordings from the first sleep cycle.
Methods
Intracerebral electroencephalographic recordings with channels displaying physiological activity from nonlesional tissue were selected from 91 patients of 3 tertiary epilepsy centers. Sections during non–rapid eye movement sleep (stages N2 and N3) and rapid eye movement sleep (stage R) were selected from the first sleep cycle for oscillatory and nonoscillatory signal analysis. Results of 1,468 channels were grouped into 38 regions covering all cortical areas.
Results
We found regional differences in the distribution of sleep transients and spectral content during all sleep stages. There was a caudorostral gradient, with more slow frequencies and fewer spindles in temporoparieto‐occipital than in frontal cortex. Moreover, deep‐seated structures showed spectral peaks differing from the baseline electroencephalogram. The regions with >60% of channels presenting significant rhythmic activity were either mesial or temporal basal structures that contribute minimally to the scalp electroencephalogram. Finally, during deeper sleep stages, electroencephalographic analysis revealed a more homogeneous spatial distribution, with increased coupling between high and low frequencies.
Interpretation
This study provides a better understanding of the regional variability of sleep, and establishes a baseline for human sleep in all cortical regions during the first sleep cycle. Furthermore, the open‐access atlas will be a unique resource for research (https://mni-open-ieegatlas.research.mcgill.ca). ANN NEUROL 2020;87:289–301 |
doi_str_mv | 10.1002/ana.25651 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2319495552</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2319495552</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4191-87941fa13becf2de8df08bc7941beaffe33df81942af1495397640f79f687e7d3</originalsourceid><addsrcrecordid>eNp10E1r3DAQBmBRGprtJof8gSLopT1sorEk28ptu_3YQMhCPs5GK49SBdvaSHaX_ffR1kkOgZwGhmdehpeQE2CnwFh2pjt9mslcwgcyAclhVmZCfSQTxnMxk8DFIfkc4wNjTOXAPpFDDkVRAGQTslr6Le3_Il0Ore7oj6BdR28axE08pz9dQNPThQ-9M7qh12h8qF13H6m39MqHNi3Hk7np3T_X747IgdVNxOPnOSV3v3_dLpazy9Wfi8X8cmYEqPRgoQRYDXyNxmY1lrVl5drst2vU1iLntS1BiUxbEEpyVeSC2ULZvCywqPmUfBtzN8E_Dhj7qnXRYNPoDv0Qq4ynYyWlzBL9-oY--CF06bukeDICSpnU91GZ4GMMaKtNcK0OuwpYtW-5Si1X_1tO9stz4rBusX6VL7UmcDaCrWtw935SNb-aj5FPhuKEQQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2339554185</pqid></control><display><type>article</type><title>How the Human Brain Sleeps: Direct Cortical Recordings of Normal Brain Activity</title><source>MEDLINE</source><source>Wiley Online Library All Journals</source><creator>Ellenrieder, Nicolás ; Gotman, Jean ; Zelmann, Rina ; Rogers, Christine ; Nguyen, Dang Khoa ; Kahane, Philippe ; Dubeau, François ; Frauscher, Birgit</creator><creatorcontrib>Ellenrieder, Nicolás ; Gotman, Jean ; Zelmann, Rina ; Rogers, Christine ; Nguyen, Dang Khoa ; Kahane, Philippe ; Dubeau, François ; Frauscher, Birgit</creatorcontrib><description>Objective
Regional variations in oscillatory activity during human sleep remain unknown. Using the unique ability of intracranial electroencephalography to study in situ brain physiology, this study assesses regional variations of electroencephalographic sleep activity and creates the first atlas of human sleep using recordings from the first sleep cycle.
Methods
Intracerebral electroencephalographic recordings with channels displaying physiological activity from nonlesional tissue were selected from 91 patients of 3 tertiary epilepsy centers. Sections during non–rapid eye movement sleep (stages N2 and N3) and rapid eye movement sleep (stage R) were selected from the first sleep cycle for oscillatory and nonoscillatory signal analysis. Results of 1,468 channels were grouped into 38 regions covering all cortical areas.
Results
We found regional differences in the distribution of sleep transients and spectral content during all sleep stages. There was a caudorostral gradient, with more slow frequencies and fewer spindles in temporoparieto‐occipital than in frontal cortex. Moreover, deep‐seated structures showed spectral peaks differing from the baseline electroencephalogram. The regions with >60% of channels presenting significant rhythmic activity were either mesial or temporal basal structures that contribute minimally to the scalp electroencephalogram. Finally, during deeper sleep stages, electroencephalographic analysis revealed a more homogeneous spatial distribution, with increased coupling between high and low frequencies.
Interpretation
This study provides a better understanding of the regional variability of sleep, and establishes a baseline for human sleep in all cortical regions during the first sleep cycle. Furthermore, the open‐access atlas will be a unique resource for research (https://mni-open-ieegatlas.research.mcgill.ca). ANN NEUROL 2020;87:289–301</description><identifier>ISSN: 0364-5134</identifier><identifier>EISSN: 1531-8249</identifier><identifier>DOI: 10.1002/ana.25651</identifier><identifier>PMID: 31777112</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Adolescent ; Adult ; Brain ; Brain Mapping - statistics & numerical data ; Brain research ; Cerebral Cortex - physiology ; Channels ; Cortex (frontal) ; EEG ; Electrocorticography - methods ; Electroencephalography ; Epilepsy ; Eye movements ; Female ; Humans ; Male ; Middle Aged ; NREM sleep ; Occipital lobe ; Regional analysis ; REM sleep ; Rhythms ; Scalp ; Signal analysis ; Sleep ; Sleep Stages - physiology ; Spatial distribution ; Temporal lobe ; Young Adult</subject><ispartof>Annals of neurology, 2020-02, Vol.87 (2), p.289-301</ispartof><rights>2019 American Neurological Association</rights><rights>2019 American Neurological Association.</rights><rights>2020 American Neurological Association</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4191-87941fa13becf2de8df08bc7941beaffe33df81942af1495397640f79f687e7d3</citedby><cites>FETCH-LOGICAL-c4191-87941fa13becf2de8df08bc7941beaffe33df81942af1495397640f79f687e7d3</cites><orcidid>0000-0003-0845-347X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fana.25651$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fana.25651$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31777112$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ellenrieder, Nicolás</creatorcontrib><creatorcontrib>Gotman, Jean</creatorcontrib><creatorcontrib>Zelmann, Rina</creatorcontrib><creatorcontrib>Rogers, Christine</creatorcontrib><creatorcontrib>Nguyen, Dang Khoa</creatorcontrib><creatorcontrib>Kahane, Philippe</creatorcontrib><creatorcontrib>Dubeau, François</creatorcontrib><creatorcontrib>Frauscher, Birgit</creatorcontrib><title>How the Human Brain Sleeps: Direct Cortical Recordings of Normal Brain Activity</title><title>Annals of neurology</title><addtitle>Ann Neurol</addtitle><description>Objective
Regional variations in oscillatory activity during human sleep remain unknown. Using the unique ability of intracranial electroencephalography to study in situ brain physiology, this study assesses regional variations of electroencephalographic sleep activity and creates the first atlas of human sleep using recordings from the first sleep cycle.
Methods
Intracerebral electroencephalographic recordings with channels displaying physiological activity from nonlesional tissue were selected from 91 patients of 3 tertiary epilepsy centers. Sections during non–rapid eye movement sleep (stages N2 and N3) and rapid eye movement sleep (stage R) were selected from the first sleep cycle for oscillatory and nonoscillatory signal analysis. Results of 1,468 channels were grouped into 38 regions covering all cortical areas.
Results
We found regional differences in the distribution of sleep transients and spectral content during all sleep stages. There was a caudorostral gradient, with more slow frequencies and fewer spindles in temporoparieto‐occipital than in frontal cortex. Moreover, deep‐seated structures showed spectral peaks differing from the baseline electroencephalogram. The regions with >60% of channels presenting significant rhythmic activity were either mesial or temporal basal structures that contribute minimally to the scalp electroencephalogram. Finally, during deeper sleep stages, electroencephalographic analysis revealed a more homogeneous spatial distribution, with increased coupling between high and low frequencies.
Interpretation
This study provides a better understanding of the regional variability of sleep, and establishes a baseline for human sleep in all cortical regions during the first sleep cycle. Furthermore, the open‐access atlas will be a unique resource for research (https://mni-open-ieegatlas.research.mcgill.ca). ANN NEUROL 2020;87:289–301</description><subject>Adolescent</subject><subject>Adult</subject><subject>Brain</subject><subject>Brain Mapping - statistics & numerical data</subject><subject>Brain research</subject><subject>Cerebral Cortex - physiology</subject><subject>Channels</subject><subject>Cortex (frontal)</subject><subject>EEG</subject><subject>Electrocorticography - methods</subject><subject>Electroencephalography</subject><subject>Epilepsy</subject><subject>Eye movements</subject><subject>Female</subject><subject>Humans</subject><subject>Male</subject><subject>Middle Aged</subject><subject>NREM sleep</subject><subject>Occipital lobe</subject><subject>Regional analysis</subject><subject>REM sleep</subject><subject>Rhythms</subject><subject>Scalp</subject><subject>Signal analysis</subject><subject>Sleep</subject><subject>Sleep Stages - physiology</subject><subject>Spatial distribution</subject><subject>Temporal lobe</subject><subject>Young Adult</subject><issn>0364-5134</issn><issn>1531-8249</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp10E1r3DAQBmBRGprtJof8gSLopT1sorEk28ptu_3YQMhCPs5GK49SBdvaSHaX_ffR1kkOgZwGhmdehpeQE2CnwFh2pjt9mslcwgcyAclhVmZCfSQTxnMxk8DFIfkc4wNjTOXAPpFDDkVRAGQTslr6Le3_Il0Ore7oj6BdR28axE08pz9dQNPThQ-9M7qh12h8qF13H6m39MqHNi3Hk7np3T_X747IgdVNxOPnOSV3v3_dLpazy9Wfi8X8cmYEqPRgoQRYDXyNxmY1lrVl5drst2vU1iLntS1BiUxbEEpyVeSC2ULZvCywqPmUfBtzN8E_Dhj7qnXRYNPoDv0Qq4ynYyWlzBL9-oY--CF06bukeDICSpnU91GZ4GMMaKtNcK0OuwpYtW-5Si1X_1tO9stz4rBusX6VL7UmcDaCrWtw935SNb-aj5FPhuKEQQ</recordid><startdate>202002</startdate><enddate>202002</enddate><creator>Ellenrieder, Nicolás</creator><creator>Gotman, Jean</creator><creator>Zelmann, Rina</creator><creator>Rogers, Christine</creator><creator>Nguyen, Dang Khoa</creator><creator>Kahane, Philippe</creator><creator>Dubeau, François</creator><creator>Frauscher, Birgit</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7U7</scope><scope>C1K</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0845-347X</orcidid></search><sort><creationdate>202002</creationdate><title>How the Human Brain Sleeps: Direct Cortical Recordings of Normal Brain Activity</title><author>Ellenrieder, Nicolás ; Gotman, Jean ; Zelmann, Rina ; Rogers, Christine ; Nguyen, Dang Khoa ; Kahane, Philippe ; Dubeau, François ; Frauscher, Birgit</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4191-87941fa13becf2de8df08bc7941beaffe33df81942af1495397640f79f687e7d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adolescent</topic><topic>Adult</topic><topic>Brain</topic><topic>Brain Mapping - statistics & numerical data</topic><topic>Brain research</topic><topic>Cerebral Cortex - physiology</topic><topic>Channels</topic><topic>Cortex (frontal)</topic><topic>EEG</topic><topic>Electrocorticography - methods</topic><topic>Electroencephalography</topic><topic>Epilepsy</topic><topic>Eye movements</topic><topic>Female</topic><topic>Humans</topic><topic>Male</topic><topic>Middle Aged</topic><topic>NREM sleep</topic><topic>Occipital lobe</topic><topic>Regional analysis</topic><topic>REM sleep</topic><topic>Rhythms</topic><topic>Scalp</topic><topic>Signal analysis</topic><topic>Sleep</topic><topic>Sleep Stages - physiology</topic><topic>Spatial distribution</topic><topic>Temporal lobe</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ellenrieder, Nicolás</creatorcontrib><creatorcontrib>Gotman, Jean</creatorcontrib><creatorcontrib>Zelmann, Rina</creatorcontrib><creatorcontrib>Rogers, Christine</creatorcontrib><creatorcontrib>Nguyen, Dang Khoa</creatorcontrib><creatorcontrib>Kahane, Philippe</creatorcontrib><creatorcontrib>Dubeau, François</creatorcontrib><creatorcontrib>Frauscher, Birgit</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Annals of neurology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ellenrieder, Nicolás</au><au>Gotman, Jean</au><au>Zelmann, Rina</au><au>Rogers, Christine</au><au>Nguyen, Dang Khoa</au><au>Kahane, Philippe</au><au>Dubeau, François</au><au>Frauscher, Birgit</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>How the Human Brain Sleeps: Direct Cortical Recordings of Normal Brain Activity</atitle><jtitle>Annals of neurology</jtitle><addtitle>Ann Neurol</addtitle><date>2020-02</date><risdate>2020</risdate><volume>87</volume><issue>2</issue><spage>289</spage><epage>301</epage><pages>289-301</pages><issn>0364-5134</issn><eissn>1531-8249</eissn><abstract>Objective
Regional variations in oscillatory activity during human sleep remain unknown. Using the unique ability of intracranial electroencephalography to study in situ brain physiology, this study assesses regional variations of electroencephalographic sleep activity and creates the first atlas of human sleep using recordings from the first sleep cycle.
Methods
Intracerebral electroencephalographic recordings with channels displaying physiological activity from nonlesional tissue were selected from 91 patients of 3 tertiary epilepsy centers. Sections during non–rapid eye movement sleep (stages N2 and N3) and rapid eye movement sleep (stage R) were selected from the first sleep cycle for oscillatory and nonoscillatory signal analysis. Results of 1,468 channels were grouped into 38 regions covering all cortical areas.
Results
We found regional differences in the distribution of sleep transients and spectral content during all sleep stages. There was a caudorostral gradient, with more slow frequencies and fewer spindles in temporoparieto‐occipital than in frontal cortex. Moreover, deep‐seated structures showed spectral peaks differing from the baseline electroencephalogram. The regions with >60% of channels presenting significant rhythmic activity were either mesial or temporal basal structures that contribute minimally to the scalp electroencephalogram. Finally, during deeper sleep stages, electroencephalographic analysis revealed a more homogeneous spatial distribution, with increased coupling between high and low frequencies.
Interpretation
This study provides a better understanding of the regional variability of sleep, and establishes a baseline for human sleep in all cortical regions during the first sleep cycle. Furthermore, the open‐access atlas will be a unique resource for research (https://mni-open-ieegatlas.research.mcgill.ca). ANN NEUROL 2020;87:289–301</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><pmid>31777112</pmid><doi>10.1002/ana.25651</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-0845-347X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0364-5134 |
ispartof | Annals of neurology, 2020-02, Vol.87 (2), p.289-301 |
issn | 0364-5134 1531-8249 |
language | eng |
recordid | cdi_proquest_miscellaneous_2319495552 |
source | MEDLINE; Wiley Online Library All Journals |
subjects | Adolescent Adult Brain Brain Mapping - statistics & numerical data Brain research Cerebral Cortex - physiology Channels Cortex (frontal) EEG Electrocorticography - methods Electroencephalography Epilepsy Eye movements Female Humans Male Middle Aged NREM sleep Occipital lobe Regional analysis REM sleep Rhythms Scalp Signal analysis Sleep Sleep Stages - physiology Spatial distribution Temporal lobe Young Adult |
title | How the Human Brain Sleeps: Direct Cortical Recordings of Normal Brain Activity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T11%3A02%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=How%20the%20Human%20Brain%20Sleeps:%20Direct%20Cortical%20Recordings%20of%20Normal%20Brain%20Activity&rft.jtitle=Annals%20of%20neurology&rft.au=Ellenrieder,%20Nicol%C3%A1s&rft.date=2020-02&rft.volume=87&rft.issue=2&rft.spage=289&rft.epage=301&rft.pages=289-301&rft.issn=0364-5134&rft.eissn=1531-8249&rft_id=info:doi/10.1002/ana.25651&rft_dat=%3Cproquest_cross%3E2319495552%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2339554185&rft_id=info:pmid/31777112&rfr_iscdi=true |