How the Human Brain Sleeps: Direct Cortical Recordings of Normal Brain Activity

Objective Regional variations in oscillatory activity during human sleep remain unknown. Using the unique ability of intracranial electroencephalography to study in situ brain physiology, this study assesses regional variations of electroencephalographic sleep activity and creates the first atlas of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of neurology 2020-02, Vol.87 (2), p.289-301
Hauptverfasser: Ellenrieder, Nicolás, Gotman, Jean, Zelmann, Rina, Rogers, Christine, Nguyen, Dang Khoa, Kahane, Philippe, Dubeau, François, Frauscher, Birgit
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 301
container_issue 2
container_start_page 289
container_title Annals of neurology
container_volume 87
creator Ellenrieder, Nicolás
Gotman, Jean
Zelmann, Rina
Rogers, Christine
Nguyen, Dang Khoa
Kahane, Philippe
Dubeau, François
Frauscher, Birgit
description Objective Regional variations in oscillatory activity during human sleep remain unknown. Using the unique ability of intracranial electroencephalography to study in situ brain physiology, this study assesses regional variations of electroencephalographic sleep activity and creates the first atlas of human sleep using recordings from the first sleep cycle. Methods Intracerebral electroencephalographic recordings with channels displaying physiological activity from nonlesional tissue were selected from 91 patients of 3 tertiary epilepsy centers. Sections during non–rapid eye movement sleep (stages N2 and N3) and rapid eye movement sleep (stage R) were selected from the first sleep cycle for oscillatory and nonoscillatory signal analysis. Results of 1,468 channels were grouped into 38 regions covering all cortical areas. Results We found regional differences in the distribution of sleep transients and spectral content during all sleep stages. There was a caudorostral gradient, with more slow frequencies and fewer spindles in temporoparieto‐occipital than in frontal cortex. Moreover, deep‐seated structures showed spectral peaks differing from the baseline electroencephalogram. The regions with >60% of channels presenting significant rhythmic activity were either mesial or temporal basal structures that contribute minimally to the scalp electroencephalogram. Finally, during deeper sleep stages, electroencephalographic analysis revealed a more homogeneous spatial distribution, with increased coupling between high and low frequencies. Interpretation This study provides a better understanding of the regional variability of sleep, and establishes a baseline for human sleep in all cortical regions during the first sleep cycle. Furthermore, the open‐access atlas will be a unique resource for research (https://mni-open-ieegatlas.research.mcgill.ca). ANN NEUROL 2020;87:289–301
doi_str_mv 10.1002/ana.25651
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2319495552</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2319495552</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4191-87941fa13becf2de8df08bc7941beaffe33df81942af1495397640f79f687e7d3</originalsourceid><addsrcrecordid>eNp10E1r3DAQBmBRGprtJof8gSLopT1sorEk28ptu_3YQMhCPs5GK49SBdvaSHaX_ffR1kkOgZwGhmdehpeQE2CnwFh2pjt9mslcwgcyAclhVmZCfSQTxnMxk8DFIfkc4wNjTOXAPpFDDkVRAGQTslr6Le3_Il0Ore7oj6BdR28axE08pz9dQNPThQ-9M7qh12h8qF13H6m39MqHNi3Hk7np3T_X747IgdVNxOPnOSV3v3_dLpazy9Wfi8X8cmYEqPRgoQRYDXyNxmY1lrVl5drst2vU1iLntS1BiUxbEEpyVeSC2ULZvCywqPmUfBtzN8E_Dhj7qnXRYNPoDv0Qq4ynYyWlzBL9-oY--CF06bukeDICSpnU91GZ4GMMaKtNcK0OuwpYtW-5Si1X_1tO9stz4rBusX6VL7UmcDaCrWtw935SNb-aj5FPhuKEQQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2339554185</pqid></control><display><type>article</type><title>How the Human Brain Sleeps: Direct Cortical Recordings of Normal Brain Activity</title><source>MEDLINE</source><source>Wiley Online Library All Journals</source><creator>Ellenrieder, Nicolás ; Gotman, Jean ; Zelmann, Rina ; Rogers, Christine ; Nguyen, Dang Khoa ; Kahane, Philippe ; Dubeau, François ; Frauscher, Birgit</creator><creatorcontrib>Ellenrieder, Nicolás ; Gotman, Jean ; Zelmann, Rina ; Rogers, Christine ; Nguyen, Dang Khoa ; Kahane, Philippe ; Dubeau, François ; Frauscher, Birgit</creatorcontrib><description>Objective Regional variations in oscillatory activity during human sleep remain unknown. Using the unique ability of intracranial electroencephalography to study in situ brain physiology, this study assesses regional variations of electroencephalographic sleep activity and creates the first atlas of human sleep using recordings from the first sleep cycle. Methods Intracerebral electroencephalographic recordings with channels displaying physiological activity from nonlesional tissue were selected from 91 patients of 3 tertiary epilepsy centers. Sections during non–rapid eye movement sleep (stages N2 and N3) and rapid eye movement sleep (stage R) were selected from the first sleep cycle for oscillatory and nonoscillatory signal analysis. Results of 1,468 channels were grouped into 38 regions covering all cortical areas. Results We found regional differences in the distribution of sleep transients and spectral content during all sleep stages. There was a caudorostral gradient, with more slow frequencies and fewer spindles in temporoparieto‐occipital than in frontal cortex. Moreover, deep‐seated structures showed spectral peaks differing from the baseline electroencephalogram. The regions with &gt;60% of channels presenting significant rhythmic activity were either mesial or temporal basal structures that contribute minimally to the scalp electroencephalogram. Finally, during deeper sleep stages, electroencephalographic analysis revealed a more homogeneous spatial distribution, with increased coupling between high and low frequencies. Interpretation This study provides a better understanding of the regional variability of sleep, and establishes a baseline for human sleep in all cortical regions during the first sleep cycle. Furthermore, the open‐access atlas will be a unique resource for research (https://mni-open-ieegatlas.research.mcgill.ca). ANN NEUROL 2020;87:289–301</description><identifier>ISSN: 0364-5134</identifier><identifier>EISSN: 1531-8249</identifier><identifier>DOI: 10.1002/ana.25651</identifier><identifier>PMID: 31777112</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Adolescent ; Adult ; Brain ; Brain Mapping - statistics &amp; numerical data ; Brain research ; Cerebral Cortex - physiology ; Channels ; Cortex (frontal) ; EEG ; Electrocorticography - methods ; Electroencephalography ; Epilepsy ; Eye movements ; Female ; Humans ; Male ; Middle Aged ; NREM sleep ; Occipital lobe ; Regional analysis ; REM sleep ; Rhythms ; Scalp ; Signal analysis ; Sleep ; Sleep Stages - physiology ; Spatial distribution ; Temporal lobe ; Young Adult</subject><ispartof>Annals of neurology, 2020-02, Vol.87 (2), p.289-301</ispartof><rights>2019 American Neurological Association</rights><rights>2019 American Neurological Association.</rights><rights>2020 American Neurological Association</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4191-87941fa13becf2de8df08bc7941beaffe33df81942af1495397640f79f687e7d3</citedby><cites>FETCH-LOGICAL-c4191-87941fa13becf2de8df08bc7941beaffe33df81942af1495397640f79f687e7d3</cites><orcidid>0000-0003-0845-347X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fana.25651$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fana.25651$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31777112$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ellenrieder, Nicolás</creatorcontrib><creatorcontrib>Gotman, Jean</creatorcontrib><creatorcontrib>Zelmann, Rina</creatorcontrib><creatorcontrib>Rogers, Christine</creatorcontrib><creatorcontrib>Nguyen, Dang Khoa</creatorcontrib><creatorcontrib>Kahane, Philippe</creatorcontrib><creatorcontrib>Dubeau, François</creatorcontrib><creatorcontrib>Frauscher, Birgit</creatorcontrib><title>How the Human Brain Sleeps: Direct Cortical Recordings of Normal Brain Activity</title><title>Annals of neurology</title><addtitle>Ann Neurol</addtitle><description>Objective Regional variations in oscillatory activity during human sleep remain unknown. Using the unique ability of intracranial electroencephalography to study in situ brain physiology, this study assesses regional variations of electroencephalographic sleep activity and creates the first atlas of human sleep using recordings from the first sleep cycle. Methods Intracerebral electroencephalographic recordings with channels displaying physiological activity from nonlesional tissue were selected from 91 patients of 3 tertiary epilepsy centers. Sections during non–rapid eye movement sleep (stages N2 and N3) and rapid eye movement sleep (stage R) were selected from the first sleep cycle for oscillatory and nonoscillatory signal analysis. Results of 1,468 channels were grouped into 38 regions covering all cortical areas. Results We found regional differences in the distribution of sleep transients and spectral content during all sleep stages. There was a caudorostral gradient, with more slow frequencies and fewer spindles in temporoparieto‐occipital than in frontal cortex. Moreover, deep‐seated structures showed spectral peaks differing from the baseline electroencephalogram. The regions with &gt;60% of channels presenting significant rhythmic activity were either mesial or temporal basal structures that contribute minimally to the scalp electroencephalogram. Finally, during deeper sleep stages, electroencephalographic analysis revealed a more homogeneous spatial distribution, with increased coupling between high and low frequencies. Interpretation This study provides a better understanding of the regional variability of sleep, and establishes a baseline for human sleep in all cortical regions during the first sleep cycle. Furthermore, the open‐access atlas will be a unique resource for research (https://mni-open-ieegatlas.research.mcgill.ca). ANN NEUROL 2020;87:289–301</description><subject>Adolescent</subject><subject>Adult</subject><subject>Brain</subject><subject>Brain Mapping - statistics &amp; numerical data</subject><subject>Brain research</subject><subject>Cerebral Cortex - physiology</subject><subject>Channels</subject><subject>Cortex (frontal)</subject><subject>EEG</subject><subject>Electrocorticography - methods</subject><subject>Electroencephalography</subject><subject>Epilepsy</subject><subject>Eye movements</subject><subject>Female</subject><subject>Humans</subject><subject>Male</subject><subject>Middle Aged</subject><subject>NREM sleep</subject><subject>Occipital lobe</subject><subject>Regional analysis</subject><subject>REM sleep</subject><subject>Rhythms</subject><subject>Scalp</subject><subject>Signal analysis</subject><subject>Sleep</subject><subject>Sleep Stages - physiology</subject><subject>Spatial distribution</subject><subject>Temporal lobe</subject><subject>Young Adult</subject><issn>0364-5134</issn><issn>1531-8249</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp10E1r3DAQBmBRGprtJof8gSLopT1sorEk28ptu_3YQMhCPs5GK49SBdvaSHaX_ffR1kkOgZwGhmdehpeQE2CnwFh2pjt9mslcwgcyAclhVmZCfSQTxnMxk8DFIfkc4wNjTOXAPpFDDkVRAGQTslr6Le3_Il0Ore7oj6BdR28axE08pz9dQNPThQ-9M7qh12h8qF13H6m39MqHNi3Hk7np3T_X747IgdVNxOPnOSV3v3_dLpazy9Wfi8X8cmYEqPRgoQRYDXyNxmY1lrVl5drst2vU1iLntS1BiUxbEEpyVeSC2ULZvCywqPmUfBtzN8E_Dhj7qnXRYNPoDv0Qq4ynYyWlzBL9-oY--CF06bukeDICSpnU91GZ4GMMaKtNcK0OuwpYtW-5Si1X_1tO9stz4rBusX6VL7UmcDaCrWtw935SNb-aj5FPhuKEQQ</recordid><startdate>202002</startdate><enddate>202002</enddate><creator>Ellenrieder, Nicolás</creator><creator>Gotman, Jean</creator><creator>Zelmann, Rina</creator><creator>Rogers, Christine</creator><creator>Nguyen, Dang Khoa</creator><creator>Kahane, Philippe</creator><creator>Dubeau, François</creator><creator>Frauscher, Birgit</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7U7</scope><scope>C1K</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0845-347X</orcidid></search><sort><creationdate>202002</creationdate><title>How the Human Brain Sleeps: Direct Cortical Recordings of Normal Brain Activity</title><author>Ellenrieder, Nicolás ; Gotman, Jean ; Zelmann, Rina ; Rogers, Christine ; Nguyen, Dang Khoa ; Kahane, Philippe ; Dubeau, François ; Frauscher, Birgit</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4191-87941fa13becf2de8df08bc7941beaffe33df81942af1495397640f79f687e7d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adolescent</topic><topic>Adult</topic><topic>Brain</topic><topic>Brain Mapping - statistics &amp; numerical data</topic><topic>Brain research</topic><topic>Cerebral Cortex - physiology</topic><topic>Channels</topic><topic>Cortex (frontal)</topic><topic>EEG</topic><topic>Electrocorticography - methods</topic><topic>Electroencephalography</topic><topic>Epilepsy</topic><topic>Eye movements</topic><topic>Female</topic><topic>Humans</topic><topic>Male</topic><topic>Middle Aged</topic><topic>NREM sleep</topic><topic>Occipital lobe</topic><topic>Regional analysis</topic><topic>REM sleep</topic><topic>Rhythms</topic><topic>Scalp</topic><topic>Signal analysis</topic><topic>Sleep</topic><topic>Sleep Stages - physiology</topic><topic>Spatial distribution</topic><topic>Temporal lobe</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ellenrieder, Nicolás</creatorcontrib><creatorcontrib>Gotman, Jean</creatorcontrib><creatorcontrib>Zelmann, Rina</creatorcontrib><creatorcontrib>Rogers, Christine</creatorcontrib><creatorcontrib>Nguyen, Dang Khoa</creatorcontrib><creatorcontrib>Kahane, Philippe</creatorcontrib><creatorcontrib>Dubeau, François</creatorcontrib><creatorcontrib>Frauscher, Birgit</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Annals of neurology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ellenrieder, Nicolás</au><au>Gotman, Jean</au><au>Zelmann, Rina</au><au>Rogers, Christine</au><au>Nguyen, Dang Khoa</au><au>Kahane, Philippe</au><au>Dubeau, François</au><au>Frauscher, Birgit</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>How the Human Brain Sleeps: Direct Cortical Recordings of Normal Brain Activity</atitle><jtitle>Annals of neurology</jtitle><addtitle>Ann Neurol</addtitle><date>2020-02</date><risdate>2020</risdate><volume>87</volume><issue>2</issue><spage>289</spage><epage>301</epage><pages>289-301</pages><issn>0364-5134</issn><eissn>1531-8249</eissn><abstract>Objective Regional variations in oscillatory activity during human sleep remain unknown. Using the unique ability of intracranial electroencephalography to study in situ brain physiology, this study assesses regional variations of electroencephalographic sleep activity and creates the first atlas of human sleep using recordings from the first sleep cycle. Methods Intracerebral electroencephalographic recordings with channels displaying physiological activity from nonlesional tissue were selected from 91 patients of 3 tertiary epilepsy centers. Sections during non–rapid eye movement sleep (stages N2 and N3) and rapid eye movement sleep (stage R) were selected from the first sleep cycle for oscillatory and nonoscillatory signal analysis. Results of 1,468 channels were grouped into 38 regions covering all cortical areas. Results We found regional differences in the distribution of sleep transients and spectral content during all sleep stages. There was a caudorostral gradient, with more slow frequencies and fewer spindles in temporoparieto‐occipital than in frontal cortex. Moreover, deep‐seated structures showed spectral peaks differing from the baseline electroencephalogram. The regions with &gt;60% of channels presenting significant rhythmic activity were either mesial or temporal basal structures that contribute minimally to the scalp electroencephalogram. Finally, during deeper sleep stages, electroencephalographic analysis revealed a more homogeneous spatial distribution, with increased coupling between high and low frequencies. Interpretation This study provides a better understanding of the regional variability of sleep, and establishes a baseline for human sleep in all cortical regions during the first sleep cycle. Furthermore, the open‐access atlas will be a unique resource for research (https://mni-open-ieegatlas.research.mcgill.ca). ANN NEUROL 2020;87:289–301</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>31777112</pmid><doi>10.1002/ana.25651</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-0845-347X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0364-5134
ispartof Annals of neurology, 2020-02, Vol.87 (2), p.289-301
issn 0364-5134
1531-8249
language eng
recordid cdi_proquest_miscellaneous_2319495552
source MEDLINE; Wiley Online Library All Journals
subjects Adolescent
Adult
Brain
Brain Mapping - statistics & numerical data
Brain research
Cerebral Cortex - physiology
Channels
Cortex (frontal)
EEG
Electrocorticography - methods
Electroencephalography
Epilepsy
Eye movements
Female
Humans
Male
Middle Aged
NREM sleep
Occipital lobe
Regional analysis
REM sleep
Rhythms
Scalp
Signal analysis
Sleep
Sleep Stages - physiology
Spatial distribution
Temporal lobe
Young Adult
title How the Human Brain Sleeps: Direct Cortical Recordings of Normal Brain Activity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T11%3A02%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=How%20the%20Human%20Brain%20Sleeps:%20Direct%20Cortical%20Recordings%20of%20Normal%20Brain%20Activity&rft.jtitle=Annals%20of%20neurology&rft.au=Ellenrieder,%20Nicol%C3%A1s&rft.date=2020-02&rft.volume=87&rft.issue=2&rft.spage=289&rft.epage=301&rft.pages=289-301&rft.issn=0364-5134&rft.eissn=1531-8249&rft_id=info:doi/10.1002/ana.25651&rft_dat=%3Cproquest_cross%3E2319495552%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2339554185&rft_id=info:pmid/31777112&rfr_iscdi=true