Finite element triangular meshing optimization for pure torsion
This paper presents a new approach to the mesh generation for torsional problems in the finite element discretization using quadratic triangular elements. A nonlinear constrained optimization program is used as a tool. As a criterion for the optimum meshing, the minimum error of second‐order differe...
Gespeichert in:
Veröffentlicht in: | International journal for numerical methods in engineering 1983-06, Vol.19 (6), p.929-942 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 942 |
---|---|
container_issue | 6 |
container_start_page | 929 |
container_title | International journal for numerical methods in engineering |
container_volume | 19 |
creator | Liniecki, Alexander Yun, Jixia |
description | This paper presents a new approach to the mesh generation for torsional problems in the finite element discretization using quadratic triangular elements. A nonlinear constrained optimization program is used as a tool.
As a criterion for the optimum meshing, the minimum error of second‐order differential operator is adopted.
An example problem is included to demonstrate the applicability of the method. Final results of the mesh distribution show significant improvements in meeting the criterion's objectives. |
doi_str_mv | 10.1002/nme.1620190612 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_23192460</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>23192460</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3872-d8293419bc760cd7d841e6fe8fb32a917789be1b241db8cd9f79dd5df16767ae3</originalsourceid><addsrcrecordid>eNqNkL1PwzAQRy0EEqWwMmdiS_HZSWxPCFWlIEpZimCznORSDPkodiIofz1BQSAmmE46vfcbHiHHQCdAKTutK5xAwigomgDbISOgSoSUUbFLRj2gwlhJ2CcH3j9RChBTPiJnF7a2LQZYYoV1G7TOmnrdlcYFFfpHW6-DZtPayr6b1jZ1UDQu2HQOg7Zxvn8ckr3ClB6Pvu6Y3F3MVtPLcHE7v5qeL8KMS8HCXDLFI1BpJhKa5SKXEWBSoCxSzowCIaRKEVIWQZ7KLFeFUHke5wUkIhEG-ZicDLsb17x06FtdWZ9hWZoam85rxkGxKKH_ASWPhezByQBmrvHeYaE3zlbGbTVQ_RlU90H1T9BeUIPwakvc_kHr5c3slxsOrvUtvn27xj3rRHAR6_vlXAu4XtEHxfWUfwCi3okP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>23183578</pqid></control><display><type>article</type><title>Finite element triangular meshing optimization for pure torsion</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Liniecki, Alexander ; Yun, Jixia</creator><creatorcontrib>Liniecki, Alexander ; Yun, Jixia</creatorcontrib><description>This paper presents a new approach to the mesh generation for torsional problems in the finite element discretization using quadratic triangular elements. A nonlinear constrained optimization program is used as a tool.
As a criterion for the optimum meshing, the minimum error of second‐order differential operator is adopted.
An example problem is included to demonstrate the applicability of the method. Final results of the mesh distribution show significant improvements in meeting the criterion's objectives.</description><identifier>ISSN: 0029-5981</identifier><identifier>EISSN: 1097-0207</identifier><identifier>DOI: 10.1002/nme.1620190612</identifier><language>eng</language><publisher>New York: John Wiley & Sons, Ltd</publisher><ispartof>International journal for numerical methods in engineering, 1983-06, Vol.19 (6), p.929-942</ispartof><rights>Copyright © 1983 John Wiley & Sons, Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3872-d8293419bc760cd7d841e6fe8fb32a917789be1b241db8cd9f79dd5df16767ae3</citedby><cites>FETCH-LOGICAL-c3872-d8293419bc760cd7d841e6fe8fb32a917789be1b241db8cd9f79dd5df16767ae3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnme.1620190612$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnme.1620190612$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Liniecki, Alexander</creatorcontrib><creatorcontrib>Yun, Jixia</creatorcontrib><title>Finite element triangular meshing optimization for pure torsion</title><title>International journal for numerical methods in engineering</title><addtitle>Int. J. Numer. Meth. Engng</addtitle><description>This paper presents a new approach to the mesh generation for torsional problems in the finite element discretization using quadratic triangular elements. A nonlinear constrained optimization program is used as a tool.
As a criterion for the optimum meshing, the minimum error of second‐order differential operator is adopted.
An example problem is included to demonstrate the applicability of the method. Final results of the mesh distribution show significant improvements in meeting the criterion's objectives.</description><issn>0029-5981</issn><issn>1097-0207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1983</creationdate><recordtype>article</recordtype><recordid>eNqNkL1PwzAQRy0EEqWwMmdiS_HZSWxPCFWlIEpZimCznORSDPkodiIofz1BQSAmmE46vfcbHiHHQCdAKTutK5xAwigomgDbISOgSoSUUbFLRj2gwlhJ2CcH3j9RChBTPiJnF7a2LQZYYoV1G7TOmnrdlcYFFfpHW6-DZtPayr6b1jZ1UDQu2HQOg7Zxvn8ckr3ClB6Pvu6Y3F3MVtPLcHE7v5qeL8KMS8HCXDLFI1BpJhKa5SKXEWBSoCxSzowCIaRKEVIWQZ7KLFeFUHke5wUkIhEG-ZicDLsb17x06FtdWZ9hWZoam85rxkGxKKH_ASWPhezByQBmrvHeYaE3zlbGbTVQ_RlU90H1T9BeUIPwakvc_kHr5c3slxsOrvUtvn27xj3rRHAR6_vlXAu4XtEHxfWUfwCi3okP</recordid><startdate>198306</startdate><enddate>198306</enddate><creator>Liniecki, Alexander</creator><creator>Yun, Jixia</creator><general>John Wiley & Sons, Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SM</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>198306</creationdate><title>Finite element triangular meshing optimization for pure torsion</title><author>Liniecki, Alexander ; Yun, Jixia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3872-d8293419bc760cd7d841e6fe8fb32a917789be1b241db8cd9f79dd5df16767ae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1983</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liniecki, Alexander</creatorcontrib><creatorcontrib>Yun, Jixia</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Earthquake Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal for numerical methods in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liniecki, Alexander</au><au>Yun, Jixia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Finite element triangular meshing optimization for pure torsion</atitle><jtitle>International journal for numerical methods in engineering</jtitle><addtitle>Int. J. Numer. Meth. Engng</addtitle><date>1983-06</date><risdate>1983</risdate><volume>19</volume><issue>6</issue><spage>929</spage><epage>942</epage><pages>929-942</pages><issn>0029-5981</issn><eissn>1097-0207</eissn><abstract>This paper presents a new approach to the mesh generation for torsional problems in the finite element discretization using quadratic triangular elements. A nonlinear constrained optimization program is used as a tool.
As a criterion for the optimum meshing, the minimum error of second‐order differential operator is adopted.
An example problem is included to demonstrate the applicability of the method. Final results of the mesh distribution show significant improvements in meeting the criterion's objectives.</abstract><cop>New York</cop><pub>John Wiley & Sons, Ltd</pub><doi>10.1002/nme.1620190612</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0029-5981 |
ispartof | International journal for numerical methods in engineering, 1983-06, Vol.19 (6), p.929-942 |
issn | 0029-5981 1097-0207 |
language | eng |
recordid | cdi_proquest_miscellaneous_23192460 |
source | Wiley Online Library Journals Frontfile Complete |
title | Finite element triangular meshing optimization for pure torsion |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T21%3A05%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Finite%20element%20triangular%20meshing%20optimization%20for%20pure%20torsion&rft.jtitle=International%20journal%20for%20numerical%20methods%20in%20engineering&rft.au=Liniecki,%20Alexander&rft.date=1983-06&rft.volume=19&rft.issue=6&rft.spage=929&rft.epage=942&rft.pages=929-942&rft.issn=0029-5981&rft.eissn=1097-0207&rft_id=info:doi/10.1002/nme.1620190612&rft_dat=%3Cproquest_cross%3E23192460%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=23183578&rft_id=info:pmid/&rfr_iscdi=true |