Finite element triangular meshing optimization for pure torsion

This paper presents a new approach to the mesh generation for torsional problems in the finite element discretization using quadratic triangular elements. A nonlinear constrained optimization program is used as a tool. As a criterion for the optimum meshing, the minimum error of second‐order differe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal for numerical methods in engineering 1983-06, Vol.19 (6), p.929-942
Hauptverfasser: Liniecki, Alexander, Yun, Jixia
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 942
container_issue 6
container_start_page 929
container_title International journal for numerical methods in engineering
container_volume 19
creator Liniecki, Alexander
Yun, Jixia
description This paper presents a new approach to the mesh generation for torsional problems in the finite element discretization using quadratic triangular elements. A nonlinear constrained optimization program is used as a tool. As a criterion for the optimum meshing, the minimum error of second‐order differential operator is adopted. An example problem is included to demonstrate the applicability of the method. Final results of the mesh distribution show significant improvements in meeting the criterion's objectives.
doi_str_mv 10.1002/nme.1620190612
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_23192460</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>23192460</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3872-d8293419bc760cd7d841e6fe8fb32a917789be1b241db8cd9f79dd5df16767ae3</originalsourceid><addsrcrecordid>eNqNkL1PwzAQRy0EEqWwMmdiS_HZSWxPCFWlIEpZimCznORSDPkodiIofz1BQSAmmE46vfcbHiHHQCdAKTutK5xAwigomgDbISOgSoSUUbFLRj2gwlhJ2CcH3j9RChBTPiJnF7a2LQZYYoV1G7TOmnrdlcYFFfpHW6-DZtPayr6b1jZ1UDQu2HQOg7Zxvn8ckr3ClB6Pvu6Y3F3MVtPLcHE7v5qeL8KMS8HCXDLFI1BpJhKa5SKXEWBSoCxSzowCIaRKEVIWQZ7KLFeFUHke5wUkIhEG-ZicDLsb17x06FtdWZ9hWZoam85rxkGxKKH_ASWPhezByQBmrvHeYaE3zlbGbTVQ_RlU90H1T9BeUIPwakvc_kHr5c3slxsOrvUtvn27xj3rRHAR6_vlXAu4XtEHxfWUfwCi3okP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>23183578</pqid></control><display><type>article</type><title>Finite element triangular meshing optimization for pure torsion</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Liniecki, Alexander ; Yun, Jixia</creator><creatorcontrib>Liniecki, Alexander ; Yun, Jixia</creatorcontrib><description>This paper presents a new approach to the mesh generation for torsional problems in the finite element discretization using quadratic triangular elements. A nonlinear constrained optimization program is used as a tool. As a criterion for the optimum meshing, the minimum error of second‐order differential operator is adopted. An example problem is included to demonstrate the applicability of the method. Final results of the mesh distribution show significant improvements in meeting the criterion's objectives.</description><identifier>ISSN: 0029-5981</identifier><identifier>EISSN: 1097-0207</identifier><identifier>DOI: 10.1002/nme.1620190612</identifier><language>eng</language><publisher>New York: John Wiley &amp; Sons, Ltd</publisher><ispartof>International journal for numerical methods in engineering, 1983-06, Vol.19 (6), p.929-942</ispartof><rights>Copyright © 1983 John Wiley &amp; Sons, Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3872-d8293419bc760cd7d841e6fe8fb32a917789be1b241db8cd9f79dd5df16767ae3</citedby><cites>FETCH-LOGICAL-c3872-d8293419bc760cd7d841e6fe8fb32a917789be1b241db8cd9f79dd5df16767ae3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnme.1620190612$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnme.1620190612$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Liniecki, Alexander</creatorcontrib><creatorcontrib>Yun, Jixia</creatorcontrib><title>Finite element triangular meshing optimization for pure torsion</title><title>International journal for numerical methods in engineering</title><addtitle>Int. J. Numer. Meth. Engng</addtitle><description>This paper presents a new approach to the mesh generation for torsional problems in the finite element discretization using quadratic triangular elements. A nonlinear constrained optimization program is used as a tool. As a criterion for the optimum meshing, the minimum error of second‐order differential operator is adopted. An example problem is included to demonstrate the applicability of the method. Final results of the mesh distribution show significant improvements in meeting the criterion's objectives.</description><issn>0029-5981</issn><issn>1097-0207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1983</creationdate><recordtype>article</recordtype><recordid>eNqNkL1PwzAQRy0EEqWwMmdiS_HZSWxPCFWlIEpZimCznORSDPkodiIofz1BQSAmmE46vfcbHiHHQCdAKTutK5xAwigomgDbISOgSoSUUbFLRj2gwlhJ2CcH3j9RChBTPiJnF7a2LQZYYoV1G7TOmnrdlcYFFfpHW6-DZtPayr6b1jZ1UDQu2HQOg7Zxvn8ckr3ClB6Pvu6Y3F3MVtPLcHE7v5qeL8KMS8HCXDLFI1BpJhKa5SKXEWBSoCxSzowCIaRKEVIWQZ7KLFeFUHke5wUkIhEG-ZicDLsb17x06FtdWZ9hWZoam85rxkGxKKH_ASWPhezByQBmrvHeYaE3zlbGbTVQ_RlU90H1T9BeUIPwakvc_kHr5c3slxsOrvUtvn27xj3rRHAR6_vlXAu4XtEHxfWUfwCi3okP</recordid><startdate>198306</startdate><enddate>198306</enddate><creator>Liniecki, Alexander</creator><creator>Yun, Jixia</creator><general>John Wiley &amp; Sons, Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SM</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>198306</creationdate><title>Finite element triangular meshing optimization for pure torsion</title><author>Liniecki, Alexander ; Yun, Jixia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3872-d8293419bc760cd7d841e6fe8fb32a917789be1b241db8cd9f79dd5df16767ae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1983</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liniecki, Alexander</creatorcontrib><creatorcontrib>Yun, Jixia</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Earthquake Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal for numerical methods in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liniecki, Alexander</au><au>Yun, Jixia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Finite element triangular meshing optimization for pure torsion</atitle><jtitle>International journal for numerical methods in engineering</jtitle><addtitle>Int. J. Numer. Meth. Engng</addtitle><date>1983-06</date><risdate>1983</risdate><volume>19</volume><issue>6</issue><spage>929</spage><epage>942</epage><pages>929-942</pages><issn>0029-5981</issn><eissn>1097-0207</eissn><abstract>This paper presents a new approach to the mesh generation for torsional problems in the finite element discretization using quadratic triangular elements. A nonlinear constrained optimization program is used as a tool. As a criterion for the optimum meshing, the minimum error of second‐order differential operator is adopted. An example problem is included to demonstrate the applicability of the method. Final results of the mesh distribution show significant improvements in meeting the criterion's objectives.</abstract><cop>New York</cop><pub>John Wiley &amp; Sons, Ltd</pub><doi>10.1002/nme.1620190612</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0029-5981
ispartof International journal for numerical methods in engineering, 1983-06, Vol.19 (6), p.929-942
issn 0029-5981
1097-0207
language eng
recordid cdi_proquest_miscellaneous_23192460
source Wiley Online Library Journals Frontfile Complete
title Finite element triangular meshing optimization for pure torsion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T21%3A05%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Finite%20element%20triangular%20meshing%20optimization%20for%20pure%20torsion&rft.jtitle=International%20journal%20for%20numerical%20methods%20in%20engineering&rft.au=Liniecki,%20Alexander&rft.date=1983-06&rft.volume=19&rft.issue=6&rft.spage=929&rft.epage=942&rft.pages=929-942&rft.issn=0029-5981&rft.eissn=1097-0207&rft_id=info:doi/10.1002/nme.1620190612&rft_dat=%3Cproquest_cross%3E23192460%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=23183578&rft_id=info:pmid/&rfr_iscdi=true