Narrow Optical Line Widths in Erbium Implanted in TiO2
Atomic and atomlike defects in the solid state are widely explored for quantum computers, networks, and sensors. Rare earth ions are an attractive class of atomic defects that feature narrow spin and optical transitions that are isolated from the host crystal, allowing incorporation into a wide rang...
Gespeichert in:
Veröffentlicht in: | Nano letters 2019-12, Vol.19 (12), p.8928-8933 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8933 |
---|---|
container_issue | 12 |
container_start_page | 8928 |
container_title | Nano letters |
container_volume | 19 |
creator | Phenicie, Christopher M Stevenson, Paul Welinski, Sacha Rose, Brendon C Asfaw, Abraham T Cava, Robert J Lyon, Stephen A de Leon, Nathalie P Thompson, Jeff D |
description | Atomic and atomlike defects in the solid state are widely explored for quantum computers, networks, and sensors. Rare earth ions are an attractive class of atomic defects that feature narrow spin and optical transitions that are isolated from the host crystal, allowing incorporation into a wide range of materials. However, the realization of long electronic spin coherence times is hampered by magnetic noise from abundant nuclear spins in the most widely studied host crystals. Here, we demonstrate that Er3+ ions can be introduced via ion implantation into TiO2, a host crystal that has not been studied extensively for rare earth ions and has a low natural abundance of nuclear spins. We observe efficient incorporation of the implanted Er3+ into the Ti4+ site (>50% yield) and measure narrow inhomogeneous spin and optical line widths (20 and 460 MHz, respectively) that are comparable to bulk-doped crystalline hosts for Er3+. This work demonstrates that ion implantation is a viable path to studying rare earth ions in new hosts and is a significant step toward realizing individually addressed rare earth ions with long spin coherence times for quantum technologies. |
doi_str_mv | 10.1021/acs.nanolett.9b03831 |
format | Article |
fullrecord | <record><control><sourceid>proquest_acs_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_2318732455</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2318732455</sourcerecordid><originalsourceid>FETCH-LOGICAL-a229t-ca0c3bc08b7bbe32fa6686c2982ee987d5c1b601d46c67db943688b03503aff33</originalsourceid><addsrcrecordid>eNo9kM1OwzAQhC0EEqXwBhxy5JKy9iaOfURVoZUieiniaNmOI1zlj9gRr0-qFk6zGo1WMx8hjxRWFBh91jasOt31jYtxJQ2gQHpFFjRHSLmU7Pr_FtktuQvhCAASc1gQ_q7Hsf9J9kP0VjdJ6TuXfPoqfoXEd8lmNH5qk107NLqLrjp5B79n9-Sm1k1wDxddko_XzWG9Tcv92279UqaaMRlTq8GisSBMYYxDVmvOBbdMCuacFEWVW2o40CrjlheVkRlyIeYBOaCua8QleTr_Hcb-e3IhqtYH65q5jeunoBhSUSDL8nyOwjk601DHfhq7uZiioE6I1Mn8Q6QuiPAXUvFb8w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2318732455</pqid></control><display><type>article</type><title>Narrow Optical Line Widths in Erbium Implanted in TiO2</title><source>American Chemical Society Journals</source><creator>Phenicie, Christopher M ; Stevenson, Paul ; Welinski, Sacha ; Rose, Brendon C ; Asfaw, Abraham T ; Cava, Robert J ; Lyon, Stephen A ; de Leon, Nathalie P ; Thompson, Jeff D</creator><creatorcontrib>Phenicie, Christopher M ; Stevenson, Paul ; Welinski, Sacha ; Rose, Brendon C ; Asfaw, Abraham T ; Cava, Robert J ; Lyon, Stephen A ; de Leon, Nathalie P ; Thompson, Jeff D</creatorcontrib><description>Atomic and atomlike defects in the solid state are widely explored for quantum computers, networks, and sensors. Rare earth ions are an attractive class of atomic defects that feature narrow spin and optical transitions that are isolated from the host crystal, allowing incorporation into a wide range of materials. However, the realization of long electronic spin coherence times is hampered by magnetic noise from abundant nuclear spins in the most widely studied host crystals. Here, we demonstrate that Er3+ ions can be introduced via ion implantation into TiO2, a host crystal that has not been studied extensively for rare earth ions and has a low natural abundance of nuclear spins. We observe efficient incorporation of the implanted Er3+ into the Ti4+ site (>50% yield) and measure narrow inhomogeneous spin and optical line widths (20 and 460 MHz, respectively) that are comparable to bulk-doped crystalline hosts for Er3+. This work demonstrates that ion implantation is a viable path to studying rare earth ions in new hosts and is a significant step toward realizing individually addressed rare earth ions with long spin coherence times for quantum technologies.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/acs.nanolett.9b03831</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Nano letters, 2019-12, Vol.19 (12), p.8928-8933</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-8673-052X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.nanolett.9b03831$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.nanolett.9b03831$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>315,781,785,27081,27929,27930,56743,56793</link.rule.ids></links><search><creatorcontrib>Phenicie, Christopher M</creatorcontrib><creatorcontrib>Stevenson, Paul</creatorcontrib><creatorcontrib>Welinski, Sacha</creatorcontrib><creatorcontrib>Rose, Brendon C</creatorcontrib><creatorcontrib>Asfaw, Abraham T</creatorcontrib><creatorcontrib>Cava, Robert J</creatorcontrib><creatorcontrib>Lyon, Stephen A</creatorcontrib><creatorcontrib>de Leon, Nathalie P</creatorcontrib><creatorcontrib>Thompson, Jeff D</creatorcontrib><title>Narrow Optical Line Widths in Erbium Implanted in TiO2</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>Atomic and atomlike defects in the solid state are widely explored for quantum computers, networks, and sensors. Rare earth ions are an attractive class of atomic defects that feature narrow spin and optical transitions that are isolated from the host crystal, allowing incorporation into a wide range of materials. However, the realization of long electronic spin coherence times is hampered by magnetic noise from abundant nuclear spins in the most widely studied host crystals. Here, we demonstrate that Er3+ ions can be introduced via ion implantation into TiO2, a host crystal that has not been studied extensively for rare earth ions and has a low natural abundance of nuclear spins. We observe efficient incorporation of the implanted Er3+ into the Ti4+ site (>50% yield) and measure narrow inhomogeneous spin and optical line widths (20 and 460 MHz, respectively) that are comparable to bulk-doped crystalline hosts for Er3+. This work demonstrates that ion implantation is a viable path to studying rare earth ions in new hosts and is a significant step toward realizing individually addressed rare earth ions with long spin coherence times for quantum technologies.</description><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9kM1OwzAQhC0EEqXwBhxy5JKy9iaOfURVoZUieiniaNmOI1zlj9gRr0-qFk6zGo1WMx8hjxRWFBh91jasOt31jYtxJQ2gQHpFFjRHSLmU7Pr_FtktuQvhCAASc1gQ_q7Hsf9J9kP0VjdJ6TuXfPoqfoXEd8lmNH5qk107NLqLrjp5B79n9-Sm1k1wDxddko_XzWG9Tcv92279UqaaMRlTq8GisSBMYYxDVmvOBbdMCuacFEWVW2o40CrjlheVkRlyIeYBOaCua8QleTr_Hcb-e3IhqtYH65q5jeunoBhSUSDL8nyOwjk601DHfhq7uZiioE6I1Mn8Q6QuiPAXUvFb8w</recordid><startdate>20191211</startdate><enddate>20191211</enddate><creator>Phenicie, Christopher M</creator><creator>Stevenson, Paul</creator><creator>Welinski, Sacha</creator><creator>Rose, Brendon C</creator><creator>Asfaw, Abraham T</creator><creator>Cava, Robert J</creator><creator>Lyon, Stephen A</creator><creator>de Leon, Nathalie P</creator><creator>Thompson, Jeff D</creator><general>American Chemical Society</general><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8673-052X</orcidid></search><sort><creationdate>20191211</creationdate><title>Narrow Optical Line Widths in Erbium Implanted in TiO2</title><author>Phenicie, Christopher M ; Stevenson, Paul ; Welinski, Sacha ; Rose, Brendon C ; Asfaw, Abraham T ; Cava, Robert J ; Lyon, Stephen A ; de Leon, Nathalie P ; Thompson, Jeff D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a229t-ca0c3bc08b7bbe32fa6686c2982ee987d5c1b601d46c67db943688b03503aff33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Phenicie, Christopher M</creatorcontrib><creatorcontrib>Stevenson, Paul</creatorcontrib><creatorcontrib>Welinski, Sacha</creatorcontrib><creatorcontrib>Rose, Brendon C</creatorcontrib><creatorcontrib>Asfaw, Abraham T</creatorcontrib><creatorcontrib>Cava, Robert J</creatorcontrib><creatorcontrib>Lyon, Stephen A</creatorcontrib><creatorcontrib>de Leon, Nathalie P</creatorcontrib><creatorcontrib>Thompson, Jeff D</creatorcontrib><collection>MEDLINE - Academic</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Phenicie, Christopher M</au><au>Stevenson, Paul</au><au>Welinski, Sacha</au><au>Rose, Brendon C</au><au>Asfaw, Abraham T</au><au>Cava, Robert J</au><au>Lyon, Stephen A</au><au>de Leon, Nathalie P</au><au>Thompson, Jeff D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Narrow Optical Line Widths in Erbium Implanted in TiO2</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2019-12-11</date><risdate>2019</risdate><volume>19</volume><issue>12</issue><spage>8928</spage><epage>8933</epage><pages>8928-8933</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>Atomic and atomlike defects in the solid state are widely explored for quantum computers, networks, and sensors. Rare earth ions are an attractive class of atomic defects that feature narrow spin and optical transitions that are isolated from the host crystal, allowing incorporation into a wide range of materials. However, the realization of long electronic spin coherence times is hampered by magnetic noise from abundant nuclear spins in the most widely studied host crystals. Here, we demonstrate that Er3+ ions can be introduced via ion implantation into TiO2, a host crystal that has not been studied extensively for rare earth ions and has a low natural abundance of nuclear spins. We observe efficient incorporation of the implanted Er3+ into the Ti4+ site (>50% yield) and measure narrow inhomogeneous spin and optical line widths (20 and 460 MHz, respectively) that are comparable to bulk-doped crystalline hosts for Er3+. This work demonstrates that ion implantation is a viable path to studying rare earth ions in new hosts and is a significant step toward realizing individually addressed rare earth ions with long spin coherence times for quantum technologies.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.nanolett.9b03831</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-8673-052X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1530-6984 |
ispartof | Nano letters, 2019-12, Vol.19 (12), p.8928-8933 |
issn | 1530-6984 1530-6992 |
language | eng |
recordid | cdi_proquest_miscellaneous_2318732455 |
source | American Chemical Society Journals |
title | Narrow Optical Line Widths in Erbium Implanted in TiO2 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T13%3A00%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Narrow%20Optical%20Line%20Widths%20in%20Erbium%20Implanted%20in%20TiO2&rft.jtitle=Nano%20letters&rft.au=Phenicie,%20Christopher%20M&rft.date=2019-12-11&rft.volume=19&rft.issue=12&rft.spage=8928&rft.epage=8933&rft.pages=8928-8933&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/acs.nanolett.9b03831&rft_dat=%3Cproquest_acs_j%3E2318732455%3C/proquest_acs_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2318732455&rft_id=info:pmid/&rfr_iscdi=true |