Narrow Optical Line Widths in Erbium Implanted in TiO2

Atomic and atomlike defects in the solid state are widely explored for quantum computers, networks, and sensors. Rare earth ions are an attractive class of atomic defects that feature narrow spin and optical transitions that are isolated from the host crystal, allowing incorporation into a wide rang...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano letters 2019-12, Vol.19 (12), p.8928-8933
Hauptverfasser: Phenicie, Christopher M, Stevenson, Paul, Welinski, Sacha, Rose, Brendon C, Asfaw, Abraham T, Cava, Robert J, Lyon, Stephen A, de Leon, Nathalie P, Thompson, Jeff D
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8933
container_issue 12
container_start_page 8928
container_title Nano letters
container_volume 19
creator Phenicie, Christopher M
Stevenson, Paul
Welinski, Sacha
Rose, Brendon C
Asfaw, Abraham T
Cava, Robert J
Lyon, Stephen A
de Leon, Nathalie P
Thompson, Jeff D
description Atomic and atomlike defects in the solid state are widely explored for quantum computers, networks, and sensors. Rare earth ions are an attractive class of atomic defects that feature narrow spin and optical transitions that are isolated from the host crystal, allowing incorporation into a wide range of materials. However, the realization of long electronic spin coherence times is hampered by magnetic noise from abundant nuclear spins in the most widely studied host crystals. Here, we demonstrate that Er3+ ions can be introduced via ion implantation into TiO2, a host crystal that has not been studied extensively for rare earth ions and has a low natural abundance of nuclear spins. We observe efficient incorporation of the implanted Er3+ into the Ti4+ site (>50% yield) and measure narrow inhomogeneous spin and optical line widths (20 and 460 MHz, respectively) that are comparable to bulk-doped crystalline hosts for Er3+. This work demonstrates that ion implantation is a viable path to studying rare earth ions in new hosts and is a significant step toward realizing individually addressed rare earth ions with long spin coherence times for quantum technologies.
doi_str_mv 10.1021/acs.nanolett.9b03831
format Article
fullrecord <record><control><sourceid>proquest_acs_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_2318732455</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2318732455</sourcerecordid><originalsourceid>FETCH-LOGICAL-a229t-ca0c3bc08b7bbe32fa6686c2982ee987d5c1b601d46c67db943688b03503aff33</originalsourceid><addsrcrecordid>eNo9kM1OwzAQhC0EEqXwBhxy5JKy9iaOfURVoZUieiniaNmOI1zlj9gRr0-qFk6zGo1WMx8hjxRWFBh91jasOt31jYtxJQ2gQHpFFjRHSLmU7Pr_FtktuQvhCAASc1gQ_q7Hsf9J9kP0VjdJ6TuXfPoqfoXEd8lmNH5qk107NLqLrjp5B79n9-Sm1k1wDxddko_XzWG9Tcv92279UqaaMRlTq8GisSBMYYxDVmvOBbdMCuacFEWVW2o40CrjlheVkRlyIeYBOaCua8QleTr_Hcb-e3IhqtYH65q5jeunoBhSUSDL8nyOwjk601DHfhq7uZiioE6I1Mn8Q6QuiPAXUvFb8w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2318732455</pqid></control><display><type>article</type><title>Narrow Optical Line Widths in Erbium Implanted in TiO2</title><source>American Chemical Society Journals</source><creator>Phenicie, Christopher M ; Stevenson, Paul ; Welinski, Sacha ; Rose, Brendon C ; Asfaw, Abraham T ; Cava, Robert J ; Lyon, Stephen A ; de Leon, Nathalie P ; Thompson, Jeff D</creator><creatorcontrib>Phenicie, Christopher M ; Stevenson, Paul ; Welinski, Sacha ; Rose, Brendon C ; Asfaw, Abraham T ; Cava, Robert J ; Lyon, Stephen A ; de Leon, Nathalie P ; Thompson, Jeff D</creatorcontrib><description>Atomic and atomlike defects in the solid state are widely explored for quantum computers, networks, and sensors. Rare earth ions are an attractive class of atomic defects that feature narrow spin and optical transitions that are isolated from the host crystal, allowing incorporation into a wide range of materials. However, the realization of long electronic spin coherence times is hampered by magnetic noise from abundant nuclear spins in the most widely studied host crystals. Here, we demonstrate that Er3+ ions can be introduced via ion implantation into TiO2, a host crystal that has not been studied extensively for rare earth ions and has a low natural abundance of nuclear spins. We observe efficient incorporation of the implanted Er3+ into the Ti4+ site (&gt;50% yield) and measure narrow inhomogeneous spin and optical line widths (20 and 460 MHz, respectively) that are comparable to bulk-doped crystalline hosts for Er3+. This work demonstrates that ion implantation is a viable path to studying rare earth ions in new hosts and is a significant step toward realizing individually addressed rare earth ions with long spin coherence times for quantum technologies.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/acs.nanolett.9b03831</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Nano letters, 2019-12, Vol.19 (12), p.8928-8933</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-8673-052X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.nanolett.9b03831$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.nanolett.9b03831$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>315,781,785,27081,27929,27930,56743,56793</link.rule.ids></links><search><creatorcontrib>Phenicie, Christopher M</creatorcontrib><creatorcontrib>Stevenson, Paul</creatorcontrib><creatorcontrib>Welinski, Sacha</creatorcontrib><creatorcontrib>Rose, Brendon C</creatorcontrib><creatorcontrib>Asfaw, Abraham T</creatorcontrib><creatorcontrib>Cava, Robert J</creatorcontrib><creatorcontrib>Lyon, Stephen A</creatorcontrib><creatorcontrib>de Leon, Nathalie P</creatorcontrib><creatorcontrib>Thompson, Jeff D</creatorcontrib><title>Narrow Optical Line Widths in Erbium Implanted in TiO2</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>Atomic and atomlike defects in the solid state are widely explored for quantum computers, networks, and sensors. Rare earth ions are an attractive class of atomic defects that feature narrow spin and optical transitions that are isolated from the host crystal, allowing incorporation into a wide range of materials. However, the realization of long electronic spin coherence times is hampered by magnetic noise from abundant nuclear spins in the most widely studied host crystals. Here, we demonstrate that Er3+ ions can be introduced via ion implantation into TiO2, a host crystal that has not been studied extensively for rare earth ions and has a low natural abundance of nuclear spins. We observe efficient incorporation of the implanted Er3+ into the Ti4+ site (&gt;50% yield) and measure narrow inhomogeneous spin and optical line widths (20 and 460 MHz, respectively) that are comparable to bulk-doped crystalline hosts for Er3+. This work demonstrates that ion implantation is a viable path to studying rare earth ions in new hosts and is a significant step toward realizing individually addressed rare earth ions with long spin coherence times for quantum technologies.</description><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9kM1OwzAQhC0EEqXwBhxy5JKy9iaOfURVoZUieiniaNmOI1zlj9gRr0-qFk6zGo1WMx8hjxRWFBh91jasOt31jYtxJQ2gQHpFFjRHSLmU7Pr_FtktuQvhCAASc1gQ_q7Hsf9J9kP0VjdJ6TuXfPoqfoXEd8lmNH5qk107NLqLrjp5B79n9-Sm1k1wDxddko_XzWG9Tcv92279UqaaMRlTq8GisSBMYYxDVmvOBbdMCuacFEWVW2o40CrjlheVkRlyIeYBOaCua8QleTr_Hcb-e3IhqtYH65q5jeunoBhSUSDL8nyOwjk601DHfhq7uZiioE6I1Mn8Q6QuiPAXUvFb8w</recordid><startdate>20191211</startdate><enddate>20191211</enddate><creator>Phenicie, Christopher M</creator><creator>Stevenson, Paul</creator><creator>Welinski, Sacha</creator><creator>Rose, Brendon C</creator><creator>Asfaw, Abraham T</creator><creator>Cava, Robert J</creator><creator>Lyon, Stephen A</creator><creator>de Leon, Nathalie P</creator><creator>Thompson, Jeff D</creator><general>American Chemical Society</general><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8673-052X</orcidid></search><sort><creationdate>20191211</creationdate><title>Narrow Optical Line Widths in Erbium Implanted in TiO2</title><author>Phenicie, Christopher M ; Stevenson, Paul ; Welinski, Sacha ; Rose, Brendon C ; Asfaw, Abraham T ; Cava, Robert J ; Lyon, Stephen A ; de Leon, Nathalie P ; Thompson, Jeff D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a229t-ca0c3bc08b7bbe32fa6686c2982ee987d5c1b601d46c67db943688b03503aff33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Phenicie, Christopher M</creatorcontrib><creatorcontrib>Stevenson, Paul</creatorcontrib><creatorcontrib>Welinski, Sacha</creatorcontrib><creatorcontrib>Rose, Brendon C</creatorcontrib><creatorcontrib>Asfaw, Abraham T</creatorcontrib><creatorcontrib>Cava, Robert J</creatorcontrib><creatorcontrib>Lyon, Stephen A</creatorcontrib><creatorcontrib>de Leon, Nathalie P</creatorcontrib><creatorcontrib>Thompson, Jeff D</creatorcontrib><collection>MEDLINE - Academic</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Phenicie, Christopher M</au><au>Stevenson, Paul</au><au>Welinski, Sacha</au><au>Rose, Brendon C</au><au>Asfaw, Abraham T</au><au>Cava, Robert J</au><au>Lyon, Stephen A</au><au>de Leon, Nathalie P</au><au>Thompson, Jeff D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Narrow Optical Line Widths in Erbium Implanted in TiO2</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2019-12-11</date><risdate>2019</risdate><volume>19</volume><issue>12</issue><spage>8928</spage><epage>8933</epage><pages>8928-8933</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>Atomic and atomlike defects in the solid state are widely explored for quantum computers, networks, and sensors. Rare earth ions are an attractive class of atomic defects that feature narrow spin and optical transitions that are isolated from the host crystal, allowing incorporation into a wide range of materials. However, the realization of long electronic spin coherence times is hampered by magnetic noise from abundant nuclear spins in the most widely studied host crystals. Here, we demonstrate that Er3+ ions can be introduced via ion implantation into TiO2, a host crystal that has not been studied extensively for rare earth ions and has a low natural abundance of nuclear spins. We observe efficient incorporation of the implanted Er3+ into the Ti4+ site (&gt;50% yield) and measure narrow inhomogeneous spin and optical line widths (20 and 460 MHz, respectively) that are comparable to bulk-doped crystalline hosts for Er3+. This work demonstrates that ion implantation is a viable path to studying rare earth ions in new hosts and is a significant step toward realizing individually addressed rare earth ions with long spin coherence times for quantum technologies.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.nanolett.9b03831</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-8673-052X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1530-6984
ispartof Nano letters, 2019-12, Vol.19 (12), p.8928-8933
issn 1530-6984
1530-6992
language eng
recordid cdi_proquest_miscellaneous_2318732455
source American Chemical Society Journals
title Narrow Optical Line Widths in Erbium Implanted in TiO2
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T13%3A00%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Narrow%20Optical%20Line%20Widths%20in%20Erbium%20Implanted%20in%20TiO2&rft.jtitle=Nano%20letters&rft.au=Phenicie,%20Christopher%20M&rft.date=2019-12-11&rft.volume=19&rft.issue=12&rft.spage=8928&rft.epage=8933&rft.pages=8928-8933&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/acs.nanolett.9b03831&rft_dat=%3Cproquest_acs_j%3E2318732455%3C/proquest_acs_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2318732455&rft_id=info:pmid/&rfr_iscdi=true