Artificial Intelligence, Radiology, and Tuberculosis: A Review
Tuberculosis is a leading cause of death from infectious disease worldwide, and is an epidemic in many developing nations. Countries where the disease is common also tend to have poor access to medical care, including diagnostic tests. Recent advancements in artificial intelligence may help to bridg...
Gespeichert in:
Veröffentlicht in: | Academic radiology 2020-01, Vol.27 (1), p.71-75 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 75 |
---|---|
container_issue | 1 |
container_start_page | 71 |
container_title | Academic radiology |
container_volume | 27 |
creator | Kulkarni, Sagar Jha, Saurabh |
description | Tuberculosis is a leading cause of death from infectious disease worldwide, and is an epidemic in many developing nations. Countries where the disease is common also tend to have poor access to medical care, including diagnostic tests. Recent advancements in artificial intelligence may help to bridge this gap. In this article, we review the applications of artificial intelligence in the diagnosis of tuberculosis using chest radiography, covering simple computer-aided diagnosis systems to more advanced deep learning algorithms. In so doing, we will demonstrate an area where artificial intelligence could make a substantial contribution to global health through improved diagnosis in the future. |
doi_str_mv | 10.1016/j.acra.2019.10.003 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2317971611</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1076633219304842</els_id><sourcerecordid>2317971611</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-8a99422d35c97fa33af402cb6515d7c93e14d95700270a9cf89940a56dd89a73</originalsourceid><addsrcrecordid>eNp9kF1LwzAUhoMobk7_gBfSSy_Wmo8maUSEMvwYDISx-5Al6cjo2pm0yv69KZteepXD4TkveR8AbhHMEETsYZsp7VWGIRJxkUFIzsAYFbxIc5iz8zhDzlJGCB6BqxC2ECLKCnIJRgRxKrhgY_Bc-s5VTjtVJ_Oms3XtNrbRdposlXFt3W4O00Q1Jln1a-t1X7fBhcekTJb2y9nva3BRqTrYm9M7AavXl9XsPV18vM1n5SLVhLIuLZQQOcaGUC14pQhRVQ6xXjOKqOFaEItyIyiHEHOohK6KyENFmTGFUJxMwP0xdu_bz96GTu5c0PGzqrFtHySOhQRHDKGI4iOqfRuCt5Xce7dT_iARlIM2uZWDNjloG3ZRWzy6O-X36501fye_niLwdARsLBmLexm0GzwZ563upGndf_k_AFh8Tg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2317971611</pqid></control><display><type>article</type><title>Artificial Intelligence, Radiology, and Tuberculosis: A Review</title><source>Elsevier ScienceDirect Journals</source><creator>Kulkarni, Sagar ; Jha, Saurabh</creator><creatorcontrib>Kulkarni, Sagar ; Jha, Saurabh</creatorcontrib><description>Tuberculosis is a leading cause of death from infectious disease worldwide, and is an epidemic in many developing nations. Countries where the disease is common also tend to have poor access to medical care, including diagnostic tests. Recent advancements in artificial intelligence may help to bridge this gap. In this article, we review the applications of artificial intelligence in the diagnosis of tuberculosis using chest radiography, covering simple computer-aided diagnosis systems to more advanced deep learning algorithms. In so doing, we will demonstrate an area where artificial intelligence could make a substantial contribution to global health through improved diagnosis in the future.</description><identifier>ISSN: 1076-6332</identifier><identifier>EISSN: 1878-4046</identifier><identifier>DOI: 10.1016/j.acra.2019.10.003</identifier><identifier>PMID: 31759796</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Artificial intelligence ; Computer-aided diagnosis ; Deep learning ; Global health ; Tuberculosis</subject><ispartof>Academic radiology, 2020-01, Vol.27 (1), p.71-75</ispartof><rights>2019 The Association of University Radiologists</rights><rights>Copyright © 2019 The Association of University Radiologists. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-8a99422d35c97fa33af402cb6515d7c93e14d95700270a9cf89940a56dd89a73</citedby><cites>FETCH-LOGICAL-c356t-8a99422d35c97fa33af402cb6515d7c93e14d95700270a9cf89940a56dd89a73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1076633219304842$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31759796$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kulkarni, Sagar</creatorcontrib><creatorcontrib>Jha, Saurabh</creatorcontrib><title>Artificial Intelligence, Radiology, and Tuberculosis: A Review</title><title>Academic radiology</title><addtitle>Acad Radiol</addtitle><description>Tuberculosis is a leading cause of death from infectious disease worldwide, and is an epidemic in many developing nations. Countries where the disease is common also tend to have poor access to medical care, including diagnostic tests. Recent advancements in artificial intelligence may help to bridge this gap. In this article, we review the applications of artificial intelligence in the diagnosis of tuberculosis using chest radiography, covering simple computer-aided diagnosis systems to more advanced deep learning algorithms. In so doing, we will demonstrate an area where artificial intelligence could make a substantial contribution to global health through improved diagnosis in the future.</description><subject>Artificial intelligence</subject><subject>Computer-aided diagnosis</subject><subject>Deep learning</subject><subject>Global health</subject><subject>Tuberculosis</subject><issn>1076-6332</issn><issn>1878-4046</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kF1LwzAUhoMobk7_gBfSSy_Wmo8maUSEMvwYDISx-5Al6cjo2pm0yv69KZteepXD4TkveR8AbhHMEETsYZsp7VWGIRJxkUFIzsAYFbxIc5iz8zhDzlJGCB6BqxC2ECLKCnIJRgRxKrhgY_Bc-s5VTjtVJ_Oms3XtNrbRdposlXFt3W4O00Q1Jln1a-t1X7fBhcekTJb2y9nva3BRqTrYm9M7AavXl9XsPV18vM1n5SLVhLIuLZQQOcaGUC14pQhRVQ6xXjOKqOFaEItyIyiHEHOohK6KyENFmTGFUJxMwP0xdu_bz96GTu5c0PGzqrFtHySOhQRHDKGI4iOqfRuCt5Xce7dT_iARlIM2uZWDNjloG3ZRWzy6O-X36501fye_niLwdARsLBmLexm0GzwZ563upGndf_k_AFh8Tg</recordid><startdate>202001</startdate><enddate>202001</enddate><creator>Kulkarni, Sagar</creator><creator>Jha, Saurabh</creator><general>Elsevier Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>202001</creationdate><title>Artificial Intelligence, Radiology, and Tuberculosis: A Review</title><author>Kulkarni, Sagar ; Jha, Saurabh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-8a99422d35c97fa33af402cb6515d7c93e14d95700270a9cf89940a56dd89a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Artificial intelligence</topic><topic>Computer-aided diagnosis</topic><topic>Deep learning</topic><topic>Global health</topic><topic>Tuberculosis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kulkarni, Sagar</creatorcontrib><creatorcontrib>Jha, Saurabh</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Academic radiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kulkarni, Sagar</au><au>Jha, Saurabh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Artificial Intelligence, Radiology, and Tuberculosis: A Review</atitle><jtitle>Academic radiology</jtitle><addtitle>Acad Radiol</addtitle><date>2020-01</date><risdate>2020</risdate><volume>27</volume><issue>1</issue><spage>71</spage><epage>75</epage><pages>71-75</pages><issn>1076-6332</issn><eissn>1878-4046</eissn><abstract>Tuberculosis is a leading cause of death from infectious disease worldwide, and is an epidemic in many developing nations. Countries where the disease is common also tend to have poor access to medical care, including diagnostic tests. Recent advancements in artificial intelligence may help to bridge this gap. In this article, we review the applications of artificial intelligence in the diagnosis of tuberculosis using chest radiography, covering simple computer-aided diagnosis systems to more advanced deep learning algorithms. In so doing, we will demonstrate an area where artificial intelligence could make a substantial contribution to global health through improved diagnosis in the future.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>31759796</pmid><doi>10.1016/j.acra.2019.10.003</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1076-6332 |
ispartof | Academic radiology, 2020-01, Vol.27 (1), p.71-75 |
issn | 1076-6332 1878-4046 |
language | eng |
recordid | cdi_proquest_miscellaneous_2317971611 |
source | Elsevier ScienceDirect Journals |
subjects | Artificial intelligence Computer-aided diagnosis Deep learning Global health Tuberculosis |
title | Artificial Intelligence, Radiology, and Tuberculosis: A Review |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T07%3A33%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Artificial%20Intelligence,%20Radiology,%20and%20Tuberculosis:%20A%20Review&rft.jtitle=Academic%20radiology&rft.au=Kulkarni,%20Sagar&rft.date=2020-01&rft.volume=27&rft.issue=1&rft.spage=71&rft.epage=75&rft.pages=71-75&rft.issn=1076-6332&rft.eissn=1878-4046&rft_id=info:doi/10.1016/j.acra.2019.10.003&rft_dat=%3Cproquest_cross%3E2317971611%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2317971611&rft_id=info:pmid/31759796&rft_els_id=S1076633219304842&rfr_iscdi=true |