Lateral Subunit Coupling Determines Intermediate Filament Mechanics
The cytoskeleton is a composite network of three types of protein filaments, among which intermediate filaments (IFs) are the most extensible ones. Two very important IFs are keratin and vimentin, which have similar molecular architectures but different mechanical behaviors. Here we compare the mech...
Gespeichert in:
Veröffentlicht in: | Physical review letters 2019-11, Vol.123 (18), p.188102-188102, Article 188102 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 188102 |
---|---|
container_issue | 18 |
container_start_page | 188102 |
container_title | Physical review letters |
container_volume | 123 |
creator | Lorenz, Charlotta Forsting, Johanna Schepers, Anna V Kraxner, Julia Bauch, Susanne Witt, Hannes Klumpp, Stefan Köster, Sarah |
description | The cytoskeleton is a composite network of three types of protein filaments, among which intermediate filaments (IFs) are the most extensible ones. Two very important IFs are keratin and vimentin, which have similar molecular architectures but different mechanical behaviors. Here we compare the mechanical response of single keratin and vimentin filaments using optical tweezers. We show that the mechanics of vimentin strongly depends on the ionic strength of the buffer and that its force-strain curve suggests a high degree of cooperativity between subunits. Indeed, a computational model indicates that in contrast to keratin, vimentin is characterized by strong lateral subunit coupling of its charged monomers during unfolding of α helices. We conclude that cells can tune their mechanics by differential use of keratin versus vimentin. |
doi_str_mv | 10.1103/PhysRevLett.123.188102 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2317965519</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2317965519</sourcerecordid><originalsourceid>FETCH-LOGICAL-c387t-a8cdecac8a72404acfa3515e3799e9f9d9e51deb57e91ce0a66cc55f0666c783</originalsourceid><addsrcrecordid>eNpdkMFKw0AQhhdRbK2-Qgl48ZI6k212s0epVoWIor2H7WZiU5JNzSZC396trSKe5of5Zpj5GBsjTBCBX7-stu6VPlPquglGfIJJghAdsSGCVKFEnB6zIQDHUAHIATtzbg0AGInklA04SsEVJkM2S3VHra6Ct37Z27ILZk2_qUr7HtySb9SlJRc82l2kvPRsMC8rXZPtgicyK21L487ZSaErRxeHOmKL-d1i9hCmz_ePs5s0NDyRXagTk5PRJtEymsJUm0LzGGPiUilShcoVxZjTMpak0BBoIYyJ4wKEDzLhI3a1X7tpm4-eXJfVpTNUVdpS07ss8l8pEceoPHr5D103fWv9cd8UREJGkafEnjJt41xLRbZpy1q32wwh21nO_ljOvOVsb9kPjg_r-6XX8jv2o5V_AUize5U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2317026722</pqid></control><display><type>article</type><title>Lateral Subunit Coupling Determines Intermediate Filament Mechanics</title><source>MEDLINE</source><source>American Physical Society Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Lorenz, Charlotta ; Forsting, Johanna ; Schepers, Anna V ; Kraxner, Julia ; Bauch, Susanne ; Witt, Hannes ; Klumpp, Stefan ; Köster, Sarah</creator><creatorcontrib>Lorenz, Charlotta ; Forsting, Johanna ; Schepers, Anna V ; Kraxner, Julia ; Bauch, Susanne ; Witt, Hannes ; Klumpp, Stefan ; Köster, Sarah</creatorcontrib><description>The cytoskeleton is a composite network of three types of protein filaments, among which intermediate filaments (IFs) are the most extensible ones. Two very important IFs are keratin and vimentin, which have similar molecular architectures but different mechanical behaviors. Here we compare the mechanical response of single keratin and vimentin filaments using optical tweezers. We show that the mechanics of vimentin strongly depends on the ionic strength of the buffer and that its force-strain curve suggests a high degree of cooperativity between subunits. Indeed, a computational model indicates that in contrast to keratin, vimentin is characterized by strong lateral subunit coupling of its charged monomers during unfolding of α helices. We conclude that cells can tune their mechanics by differential use of keratin versus vimentin.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.123.188102</identifier><identifier>PMID: 31763918</identifier><language>eng</language><publisher>United States: American Physical Society</publisher><subject>Biomechanical Phenomena ; Buffers ; Coupling (molecular) ; Cytoskeleton - chemistry ; Cytoskeleton - metabolism ; Filaments ; Helices ; Keratin ; Keratins - chemistry ; Keratins - metabolism ; Mechanical analysis ; Mechanics ; Mechanics (physics) ; Microscopy, Atomic Force ; Models, Biological ; Optical Tweezers ; Osmolar Concentration ; Protein Conformation, alpha-Helical ; Vimentin - chemistry ; Vimentin - metabolism</subject><ispartof>Physical review letters, 2019-11, Vol.123 (18), p.188102-188102, Article 188102</ispartof><rights>Copyright American Physical Society Nov 1, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c387t-a8cdecac8a72404acfa3515e3799e9f9d9e51deb57e91ce0a66cc55f0666c783</citedby><cites>FETCH-LOGICAL-c387t-a8cdecac8a72404acfa3515e3799e9f9d9e51deb57e91ce0a66cc55f0666c783</cites><orcidid>0000-0002-0009-1024</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2876,2877,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31763918$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lorenz, Charlotta</creatorcontrib><creatorcontrib>Forsting, Johanna</creatorcontrib><creatorcontrib>Schepers, Anna V</creatorcontrib><creatorcontrib>Kraxner, Julia</creatorcontrib><creatorcontrib>Bauch, Susanne</creatorcontrib><creatorcontrib>Witt, Hannes</creatorcontrib><creatorcontrib>Klumpp, Stefan</creatorcontrib><creatorcontrib>Köster, Sarah</creatorcontrib><title>Lateral Subunit Coupling Determines Intermediate Filament Mechanics</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>The cytoskeleton is a composite network of three types of protein filaments, among which intermediate filaments (IFs) are the most extensible ones. Two very important IFs are keratin and vimentin, which have similar molecular architectures but different mechanical behaviors. Here we compare the mechanical response of single keratin and vimentin filaments using optical tweezers. We show that the mechanics of vimentin strongly depends on the ionic strength of the buffer and that its force-strain curve suggests a high degree of cooperativity between subunits. Indeed, a computational model indicates that in contrast to keratin, vimentin is characterized by strong lateral subunit coupling of its charged monomers during unfolding of α helices. We conclude that cells can tune their mechanics by differential use of keratin versus vimentin.</description><subject>Biomechanical Phenomena</subject><subject>Buffers</subject><subject>Coupling (molecular)</subject><subject>Cytoskeleton - chemistry</subject><subject>Cytoskeleton - metabolism</subject><subject>Filaments</subject><subject>Helices</subject><subject>Keratin</subject><subject>Keratins - chemistry</subject><subject>Keratins - metabolism</subject><subject>Mechanical analysis</subject><subject>Mechanics</subject><subject>Mechanics (physics)</subject><subject>Microscopy, Atomic Force</subject><subject>Models, Biological</subject><subject>Optical Tweezers</subject><subject>Osmolar Concentration</subject><subject>Protein Conformation, alpha-Helical</subject><subject>Vimentin - chemistry</subject><subject>Vimentin - metabolism</subject><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkMFKw0AQhhdRbK2-Qgl48ZI6k212s0epVoWIor2H7WZiU5JNzSZC396trSKe5of5Zpj5GBsjTBCBX7-stu6VPlPquglGfIJJghAdsSGCVKFEnB6zIQDHUAHIATtzbg0AGInklA04SsEVJkM2S3VHra6Ct37Z27ILZk2_qUr7HtySb9SlJRc82l2kvPRsMC8rXZPtgicyK21L487ZSaErRxeHOmKL-d1i9hCmz_ePs5s0NDyRXagTk5PRJtEymsJUm0LzGGPiUilShcoVxZjTMpak0BBoIYyJ4wKEDzLhI3a1X7tpm4-eXJfVpTNUVdpS07ss8l8pEceoPHr5D103fWv9cd8UREJGkafEnjJt41xLRbZpy1q32wwh21nO_ljOvOVsb9kPjg_r-6XX8jv2o5V_AUize5U</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>Lorenz, Charlotta</creator><creator>Forsting, Johanna</creator><creator>Schepers, Anna V</creator><creator>Kraxner, Julia</creator><creator>Bauch, Susanne</creator><creator>Witt, Hannes</creator><creator>Klumpp, Stefan</creator><creator>Köster, Sarah</creator><general>American Physical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0009-1024</orcidid></search><sort><creationdate>20191101</creationdate><title>Lateral Subunit Coupling Determines Intermediate Filament Mechanics</title><author>Lorenz, Charlotta ; Forsting, Johanna ; Schepers, Anna V ; Kraxner, Julia ; Bauch, Susanne ; Witt, Hannes ; Klumpp, Stefan ; Köster, Sarah</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c387t-a8cdecac8a72404acfa3515e3799e9f9d9e51deb57e91ce0a66cc55f0666c783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Biomechanical Phenomena</topic><topic>Buffers</topic><topic>Coupling (molecular)</topic><topic>Cytoskeleton - chemistry</topic><topic>Cytoskeleton - metabolism</topic><topic>Filaments</topic><topic>Helices</topic><topic>Keratin</topic><topic>Keratins - chemistry</topic><topic>Keratins - metabolism</topic><topic>Mechanical analysis</topic><topic>Mechanics</topic><topic>Mechanics (physics)</topic><topic>Microscopy, Atomic Force</topic><topic>Models, Biological</topic><topic>Optical Tweezers</topic><topic>Osmolar Concentration</topic><topic>Protein Conformation, alpha-Helical</topic><topic>Vimentin - chemistry</topic><topic>Vimentin - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lorenz, Charlotta</creatorcontrib><creatorcontrib>Forsting, Johanna</creatorcontrib><creatorcontrib>Schepers, Anna V</creatorcontrib><creatorcontrib>Kraxner, Julia</creatorcontrib><creatorcontrib>Bauch, Susanne</creatorcontrib><creatorcontrib>Witt, Hannes</creatorcontrib><creatorcontrib>Klumpp, Stefan</creatorcontrib><creatorcontrib>Köster, Sarah</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lorenz, Charlotta</au><au>Forsting, Johanna</au><au>Schepers, Anna V</au><au>Kraxner, Julia</au><au>Bauch, Susanne</au><au>Witt, Hannes</au><au>Klumpp, Stefan</au><au>Köster, Sarah</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lateral Subunit Coupling Determines Intermediate Filament Mechanics</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2019-11-01</date><risdate>2019</risdate><volume>123</volume><issue>18</issue><spage>188102</spage><epage>188102</epage><pages>188102-188102</pages><artnum>188102</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>The cytoskeleton is a composite network of three types of protein filaments, among which intermediate filaments (IFs) are the most extensible ones. Two very important IFs are keratin and vimentin, which have similar molecular architectures but different mechanical behaviors. Here we compare the mechanical response of single keratin and vimentin filaments using optical tweezers. We show that the mechanics of vimentin strongly depends on the ionic strength of the buffer and that its force-strain curve suggests a high degree of cooperativity between subunits. Indeed, a computational model indicates that in contrast to keratin, vimentin is characterized by strong lateral subunit coupling of its charged monomers during unfolding of α helices. We conclude that cells can tune their mechanics by differential use of keratin versus vimentin.</abstract><cop>United States</cop><pub>American Physical Society</pub><pmid>31763918</pmid><doi>10.1103/PhysRevLett.123.188102</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-0009-1024</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-9007 |
ispartof | Physical review letters, 2019-11, Vol.123 (18), p.188102-188102, Article 188102 |
issn | 0031-9007 1079-7114 |
language | eng |
recordid | cdi_proquest_miscellaneous_2317965519 |
source | MEDLINE; American Physical Society Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Biomechanical Phenomena Buffers Coupling (molecular) Cytoskeleton - chemistry Cytoskeleton - metabolism Filaments Helices Keratin Keratins - chemistry Keratins - metabolism Mechanical analysis Mechanics Mechanics (physics) Microscopy, Atomic Force Models, Biological Optical Tweezers Osmolar Concentration Protein Conformation, alpha-Helical Vimentin - chemistry Vimentin - metabolism |
title | Lateral Subunit Coupling Determines Intermediate Filament Mechanics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T23%3A45%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lateral%20Subunit%20Coupling%20Determines%20Intermediate%20Filament%20Mechanics&rft.jtitle=Physical%20review%20letters&rft.au=Lorenz,%20Charlotta&rft.date=2019-11-01&rft.volume=123&rft.issue=18&rft.spage=188102&rft.epage=188102&rft.pages=188102-188102&rft.artnum=188102&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.123.188102&rft_dat=%3Cproquest_cross%3E2317965519%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2317026722&rft_id=info:pmid/31763918&rfr_iscdi=true |