Lateral Subunit Coupling Determines Intermediate Filament Mechanics

The cytoskeleton is a composite network of three types of protein filaments, among which intermediate filaments (IFs) are the most extensible ones. Two very important IFs are keratin and vimentin, which have similar molecular architectures but different mechanical behaviors. Here we compare the mech...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2019-11, Vol.123 (18), p.188102-188102, Article 188102
Hauptverfasser: Lorenz, Charlotta, Forsting, Johanna, Schepers, Anna V, Kraxner, Julia, Bauch, Susanne, Witt, Hannes, Klumpp, Stefan, Köster, Sarah
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 188102
container_issue 18
container_start_page 188102
container_title Physical review letters
container_volume 123
creator Lorenz, Charlotta
Forsting, Johanna
Schepers, Anna V
Kraxner, Julia
Bauch, Susanne
Witt, Hannes
Klumpp, Stefan
Köster, Sarah
description The cytoskeleton is a composite network of three types of protein filaments, among which intermediate filaments (IFs) are the most extensible ones. Two very important IFs are keratin and vimentin, which have similar molecular architectures but different mechanical behaviors. Here we compare the mechanical response of single keratin and vimentin filaments using optical tweezers. We show that the mechanics of vimentin strongly depends on the ionic strength of the buffer and that its force-strain curve suggests a high degree of cooperativity between subunits. Indeed, a computational model indicates that in contrast to keratin, vimentin is characterized by strong lateral subunit coupling of its charged monomers during unfolding of α helices. We conclude that cells can tune their mechanics by differential use of keratin versus vimentin.
doi_str_mv 10.1103/PhysRevLett.123.188102
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2317965519</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2317965519</sourcerecordid><originalsourceid>FETCH-LOGICAL-c387t-a8cdecac8a72404acfa3515e3799e9f9d9e51deb57e91ce0a66cc55f0666c783</originalsourceid><addsrcrecordid>eNpdkMFKw0AQhhdRbK2-Qgl48ZI6k212s0epVoWIor2H7WZiU5JNzSZC396trSKe5of5Zpj5GBsjTBCBX7-stu6VPlPquglGfIJJghAdsSGCVKFEnB6zIQDHUAHIATtzbg0AGInklA04SsEVJkM2S3VHra6Ct37Z27ILZk2_qUr7HtySb9SlJRc82l2kvPRsMC8rXZPtgicyK21L487ZSaErRxeHOmKL-d1i9hCmz_ePs5s0NDyRXagTk5PRJtEymsJUm0LzGGPiUilShcoVxZjTMpak0BBoIYyJ4wKEDzLhI3a1X7tpm4-eXJfVpTNUVdpS07ss8l8pEceoPHr5D103fWv9cd8UREJGkafEnjJt41xLRbZpy1q32wwh21nO_ljOvOVsb9kPjg_r-6XX8jv2o5V_AUize5U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2317026722</pqid></control><display><type>article</type><title>Lateral Subunit Coupling Determines Intermediate Filament Mechanics</title><source>MEDLINE</source><source>American Physical Society Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Lorenz, Charlotta ; Forsting, Johanna ; Schepers, Anna V ; Kraxner, Julia ; Bauch, Susanne ; Witt, Hannes ; Klumpp, Stefan ; Köster, Sarah</creator><creatorcontrib>Lorenz, Charlotta ; Forsting, Johanna ; Schepers, Anna V ; Kraxner, Julia ; Bauch, Susanne ; Witt, Hannes ; Klumpp, Stefan ; Köster, Sarah</creatorcontrib><description>The cytoskeleton is a composite network of three types of protein filaments, among which intermediate filaments (IFs) are the most extensible ones. Two very important IFs are keratin and vimentin, which have similar molecular architectures but different mechanical behaviors. Here we compare the mechanical response of single keratin and vimentin filaments using optical tweezers. We show that the mechanics of vimentin strongly depends on the ionic strength of the buffer and that its force-strain curve suggests a high degree of cooperativity between subunits. Indeed, a computational model indicates that in contrast to keratin, vimentin is characterized by strong lateral subunit coupling of its charged monomers during unfolding of α helices. We conclude that cells can tune their mechanics by differential use of keratin versus vimentin.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.123.188102</identifier><identifier>PMID: 31763918</identifier><language>eng</language><publisher>United States: American Physical Society</publisher><subject>Biomechanical Phenomena ; Buffers ; Coupling (molecular) ; Cytoskeleton - chemistry ; Cytoskeleton - metabolism ; Filaments ; Helices ; Keratin ; Keratins - chemistry ; Keratins - metabolism ; Mechanical analysis ; Mechanics ; Mechanics (physics) ; Microscopy, Atomic Force ; Models, Biological ; Optical Tweezers ; Osmolar Concentration ; Protein Conformation, alpha-Helical ; Vimentin - chemistry ; Vimentin - metabolism</subject><ispartof>Physical review letters, 2019-11, Vol.123 (18), p.188102-188102, Article 188102</ispartof><rights>Copyright American Physical Society Nov 1, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c387t-a8cdecac8a72404acfa3515e3799e9f9d9e51deb57e91ce0a66cc55f0666c783</citedby><cites>FETCH-LOGICAL-c387t-a8cdecac8a72404acfa3515e3799e9f9d9e51deb57e91ce0a66cc55f0666c783</cites><orcidid>0000-0002-0009-1024</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2876,2877,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31763918$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lorenz, Charlotta</creatorcontrib><creatorcontrib>Forsting, Johanna</creatorcontrib><creatorcontrib>Schepers, Anna V</creatorcontrib><creatorcontrib>Kraxner, Julia</creatorcontrib><creatorcontrib>Bauch, Susanne</creatorcontrib><creatorcontrib>Witt, Hannes</creatorcontrib><creatorcontrib>Klumpp, Stefan</creatorcontrib><creatorcontrib>Köster, Sarah</creatorcontrib><title>Lateral Subunit Coupling Determines Intermediate Filament Mechanics</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>The cytoskeleton is a composite network of three types of protein filaments, among which intermediate filaments (IFs) are the most extensible ones. Two very important IFs are keratin and vimentin, which have similar molecular architectures but different mechanical behaviors. Here we compare the mechanical response of single keratin and vimentin filaments using optical tweezers. We show that the mechanics of vimentin strongly depends on the ionic strength of the buffer and that its force-strain curve suggests a high degree of cooperativity between subunits. Indeed, a computational model indicates that in contrast to keratin, vimentin is characterized by strong lateral subunit coupling of its charged monomers during unfolding of α helices. We conclude that cells can tune their mechanics by differential use of keratin versus vimentin.</description><subject>Biomechanical Phenomena</subject><subject>Buffers</subject><subject>Coupling (molecular)</subject><subject>Cytoskeleton - chemistry</subject><subject>Cytoskeleton - metabolism</subject><subject>Filaments</subject><subject>Helices</subject><subject>Keratin</subject><subject>Keratins - chemistry</subject><subject>Keratins - metabolism</subject><subject>Mechanical analysis</subject><subject>Mechanics</subject><subject>Mechanics (physics)</subject><subject>Microscopy, Atomic Force</subject><subject>Models, Biological</subject><subject>Optical Tweezers</subject><subject>Osmolar Concentration</subject><subject>Protein Conformation, alpha-Helical</subject><subject>Vimentin - chemistry</subject><subject>Vimentin - metabolism</subject><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkMFKw0AQhhdRbK2-Qgl48ZI6k212s0epVoWIor2H7WZiU5JNzSZC396trSKe5of5Zpj5GBsjTBCBX7-stu6VPlPquglGfIJJghAdsSGCVKFEnB6zIQDHUAHIATtzbg0AGInklA04SsEVJkM2S3VHra6Ct37Z27ILZk2_qUr7HtySb9SlJRc82l2kvPRsMC8rXZPtgicyK21L487ZSaErRxeHOmKL-d1i9hCmz_ePs5s0NDyRXagTk5PRJtEymsJUm0LzGGPiUilShcoVxZjTMpak0BBoIYyJ4wKEDzLhI3a1X7tpm4-eXJfVpTNUVdpS07ss8l8pEceoPHr5D103fWv9cd8UREJGkafEnjJt41xLRbZpy1q32wwh21nO_ljOvOVsb9kPjg_r-6XX8jv2o5V_AUize5U</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>Lorenz, Charlotta</creator><creator>Forsting, Johanna</creator><creator>Schepers, Anna V</creator><creator>Kraxner, Julia</creator><creator>Bauch, Susanne</creator><creator>Witt, Hannes</creator><creator>Klumpp, Stefan</creator><creator>Köster, Sarah</creator><general>American Physical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0009-1024</orcidid></search><sort><creationdate>20191101</creationdate><title>Lateral Subunit Coupling Determines Intermediate Filament Mechanics</title><author>Lorenz, Charlotta ; Forsting, Johanna ; Schepers, Anna V ; Kraxner, Julia ; Bauch, Susanne ; Witt, Hannes ; Klumpp, Stefan ; Köster, Sarah</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c387t-a8cdecac8a72404acfa3515e3799e9f9d9e51deb57e91ce0a66cc55f0666c783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Biomechanical Phenomena</topic><topic>Buffers</topic><topic>Coupling (molecular)</topic><topic>Cytoskeleton - chemistry</topic><topic>Cytoskeleton - metabolism</topic><topic>Filaments</topic><topic>Helices</topic><topic>Keratin</topic><topic>Keratins - chemistry</topic><topic>Keratins - metabolism</topic><topic>Mechanical analysis</topic><topic>Mechanics</topic><topic>Mechanics (physics)</topic><topic>Microscopy, Atomic Force</topic><topic>Models, Biological</topic><topic>Optical Tweezers</topic><topic>Osmolar Concentration</topic><topic>Protein Conformation, alpha-Helical</topic><topic>Vimentin - chemistry</topic><topic>Vimentin - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lorenz, Charlotta</creatorcontrib><creatorcontrib>Forsting, Johanna</creatorcontrib><creatorcontrib>Schepers, Anna V</creatorcontrib><creatorcontrib>Kraxner, Julia</creatorcontrib><creatorcontrib>Bauch, Susanne</creatorcontrib><creatorcontrib>Witt, Hannes</creatorcontrib><creatorcontrib>Klumpp, Stefan</creatorcontrib><creatorcontrib>Köster, Sarah</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lorenz, Charlotta</au><au>Forsting, Johanna</au><au>Schepers, Anna V</au><au>Kraxner, Julia</au><au>Bauch, Susanne</au><au>Witt, Hannes</au><au>Klumpp, Stefan</au><au>Köster, Sarah</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lateral Subunit Coupling Determines Intermediate Filament Mechanics</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2019-11-01</date><risdate>2019</risdate><volume>123</volume><issue>18</issue><spage>188102</spage><epage>188102</epage><pages>188102-188102</pages><artnum>188102</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>The cytoskeleton is a composite network of three types of protein filaments, among which intermediate filaments (IFs) are the most extensible ones. Two very important IFs are keratin and vimentin, which have similar molecular architectures but different mechanical behaviors. Here we compare the mechanical response of single keratin and vimentin filaments using optical tweezers. We show that the mechanics of vimentin strongly depends on the ionic strength of the buffer and that its force-strain curve suggests a high degree of cooperativity between subunits. Indeed, a computational model indicates that in contrast to keratin, vimentin is characterized by strong lateral subunit coupling of its charged monomers during unfolding of α helices. We conclude that cells can tune their mechanics by differential use of keratin versus vimentin.</abstract><cop>United States</cop><pub>American Physical Society</pub><pmid>31763918</pmid><doi>10.1103/PhysRevLett.123.188102</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-0009-1024</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0031-9007
ispartof Physical review letters, 2019-11, Vol.123 (18), p.188102-188102, Article 188102
issn 0031-9007
1079-7114
language eng
recordid cdi_proquest_miscellaneous_2317965519
source MEDLINE; American Physical Society Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Biomechanical Phenomena
Buffers
Coupling (molecular)
Cytoskeleton - chemistry
Cytoskeleton - metabolism
Filaments
Helices
Keratin
Keratins - chemistry
Keratins - metabolism
Mechanical analysis
Mechanics
Mechanics (physics)
Microscopy, Atomic Force
Models, Biological
Optical Tweezers
Osmolar Concentration
Protein Conformation, alpha-Helical
Vimentin - chemistry
Vimentin - metabolism
title Lateral Subunit Coupling Determines Intermediate Filament Mechanics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T23%3A45%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lateral%20Subunit%20Coupling%20Determines%20Intermediate%20Filament%20Mechanics&rft.jtitle=Physical%20review%20letters&rft.au=Lorenz,%20Charlotta&rft.date=2019-11-01&rft.volume=123&rft.issue=18&rft.spage=188102&rft.epage=188102&rft.pages=188102-188102&rft.artnum=188102&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.123.188102&rft_dat=%3Cproquest_cross%3E2317965519%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2317026722&rft_id=info:pmid/31763918&rfr_iscdi=true