Negative Regulation of Osteoclast Commitment by Intracellular Protein Phosphatase Magnesium‐Dependent 1A

Objective Increased protein phosphatase magnesium‐dependent 1A (PPM1A) levels in patients with ankylosing spondylitis regulate osteoblast differentiation in bony ankylosis; however, the potential mechanisms that regulate osteoclast differentiation in relation to abnormal bone formation remain unclea...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Arthritis & rheumatology (Hoboken, N.J.) N.J.), 2020-05, Vol.72 (5), p.750-760
Hauptverfasser: Kwon, Oh Chan, Choi, Bongkun, Lee, Eun‐Jin, Park, Ji‐Eun, Lee, Eun‐Ju, Kim, Eun‐Young, Kim, Sang‐Min, Shin, Min‐Kyung, Kim, Tae‐Hwan, Hong, Seokchan, Lee, Chang‐Keun, Yoo, Bin, Robinson, William H., Kim, Yong‐Gil, Chang, Eun‐Ju
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 760
container_issue 5
container_start_page 750
container_title Arthritis & rheumatology (Hoboken, N.J.)
container_volume 72
creator Kwon, Oh Chan
Choi, Bongkun
Lee, Eun‐Jin
Park, Ji‐Eun
Lee, Eun‐Ju
Kim, Eun‐Young
Kim, Sang‐Min
Shin, Min‐Kyung
Kim, Tae‐Hwan
Hong, Seokchan
Lee, Chang‐Keun
Yoo, Bin
Robinson, William H.
Kim, Yong‐Gil
Chang, Eun‐Ju
description Objective Increased protein phosphatase magnesium‐dependent 1A (PPM1A) levels in patients with ankylosing spondylitis regulate osteoblast differentiation in bony ankylosis; however, the potential mechanisms that regulate osteoclast differentiation in relation to abnormal bone formation remain unclear. This study was undertaken to investigate the relationship of PPM1A to osteoclast differentiation by generating conditional gene‐knockout (PPM1Afl/fl;LysM‐Cre) mice and evaluating their bone phenotype. Methods The bone phenotypes of LysM‐Cre mice (n = 6) and PPM1Afl/fl;LysM‐Cre mice (n = 6) were assessed by micro–computed tomography. Osteoclast differentiation was induced by culturing bone marrow–derived macrophages in the presence of RANKL and macrophage colony‐stimulating factor (M‐CSF), and was evaluated by counting tartrate‐resistant acid phosphatase–positive multinucleated cells. Levels of messenger RNA for PPM1A, RANK, and osteoclast‐specific genes were examined by real‐time quantitative polymerase chain reaction, and protein levels were determined by Western blotting. Surface RANK expression was analyzed by fluorescence flow cytometry. Results The PPM1Afl/fl;LysM‐Cre mice displayed reduced bone mass (P < 0.001) and increased osteoclast differentiation (P < 0.001) and osteoclast‐specific gene expression (P < 0.05) compared with their LysM‐Cre littermates. Mechanistically, reduced PPM1A function in osteoclast precursors in PPM1Afl/fl;LysM‐Cre mice induced osteoclast lineage commitment by up‐regulating RANK expression (P < 0.01) via p38 MAPK activation in response to M‐CSF. PPM1A expression in macrophages was decreased by Toll‐like receptor 4 activation (P < 0.05). The Ankylosing Spondylitis Disease Activity Score was negatively correlated with the expression of PPM1A in peripheral blood mononuclear cells from patients with axial spondyloarthritis (SpA) (γ = −0.7072, P < 0.0001). Conclusion The loss of PPM1A function in osteoclast precursors driven by inflammatory signals contributes to osteoclast lineage commitment and differentiation by elevating RANK expression, reflecting a potential role of PPM1A in dynamic bone metabolism in axial SpA.
doi_str_mv 10.1002/art.41180
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2317960208</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2317960208</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3530-10e4686fe317dced5f64d171cc30b28597d5f18de51c039900de2e61e4c3394a3</originalsourceid><addsrcrecordid>eNp1kctKAzEUhoMoKurCF5CAG11UT5KZdLIs9Qpeiuh6SDNn6pSZSU0ySnc-gs_ok5ja6kIwmxzCl4-f8xOyz-CEAfBT7cJJwlgGa2SbCy57KYd0_Wdmim2RPe-nEI_qg4R0k2wJ1pecM7lNpnc40aF6RfqAk66Oo22pLem9D2hNrX2gQ9s0VWiwDXQ8p9dtcNpgXUfY0ZGzAauWjp6tnz3roD3SWz1p0Vdd8_n-cYYzbIvFVzbYJRulrj3ure4d8nRx_ji86t3cX14PBzc9I1IBPQaYyEyWGEMWBou0lEnB-swYAWOepaofn1hWYMoMCKUACuQoGSZGCJVosUOOlt6Zsy8d-pA3lV8k1i3azuc8ipUEDllED_-gU9u5NqaLlEriklQqInW8pIyz3jss85mrGu3mOYN80UEeO8i_O4jswcrYjRssfsmfjUfgdAm8VTXO_zflg4fHpfILudeQ3Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2394762953</pqid></control><display><type>article</type><title>Negative Regulation of Osteoclast Commitment by Intracellular Protein Phosphatase Magnesium‐Dependent 1A</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Alma/SFX Local Collection</source><creator>Kwon, Oh Chan ; Choi, Bongkun ; Lee, Eun‐Jin ; Park, Ji‐Eun ; Lee, Eun‐Ju ; Kim, Eun‐Young ; Kim, Sang‐Min ; Shin, Min‐Kyung ; Kim, Tae‐Hwan ; Hong, Seokchan ; Lee, Chang‐Keun ; Yoo, Bin ; Robinson, William H. ; Kim, Yong‐Gil ; Chang, Eun‐Ju</creator><creatorcontrib>Kwon, Oh Chan ; Choi, Bongkun ; Lee, Eun‐Jin ; Park, Ji‐Eun ; Lee, Eun‐Ju ; Kim, Eun‐Young ; Kim, Sang‐Min ; Shin, Min‐Kyung ; Kim, Tae‐Hwan ; Hong, Seokchan ; Lee, Chang‐Keun ; Yoo, Bin ; Robinson, William H. ; Kim, Yong‐Gil ; Chang, Eun‐Ju</creatorcontrib><description><![CDATA[Objective Increased protein phosphatase magnesium‐dependent 1A (PPM1A) levels in patients with ankylosing spondylitis regulate osteoblast differentiation in bony ankylosis; however, the potential mechanisms that regulate osteoclast differentiation in relation to abnormal bone formation remain unclear. This study was undertaken to investigate the relationship of PPM1A to osteoclast differentiation by generating conditional gene‐knockout (PPM1Afl/fl;LysM‐Cre) mice and evaluating their bone phenotype. Methods The bone phenotypes of LysM‐Cre mice (n = 6) and PPM1Afl/fl;LysM‐Cre mice (n = 6) were assessed by micro–computed tomography. Osteoclast differentiation was induced by culturing bone marrow–derived macrophages in the presence of RANKL and macrophage colony‐stimulating factor (M‐CSF), and was evaluated by counting tartrate‐resistant acid phosphatase–positive multinucleated cells. Levels of messenger RNA for PPM1A, RANK, and osteoclast‐specific genes were examined by real‐time quantitative polymerase chain reaction, and protein levels were determined by Western blotting. Surface RANK expression was analyzed by fluorescence flow cytometry. Results The PPM1Afl/fl;LysM‐Cre mice displayed reduced bone mass (P < 0.001) and increased osteoclast differentiation (P < 0.001) and osteoclast‐specific gene expression (P < 0.05) compared with their LysM‐Cre littermates. Mechanistically, reduced PPM1A function in osteoclast precursors in PPM1Afl/fl;LysM‐Cre mice induced osteoclast lineage commitment by up‐regulating RANK expression (P < 0.01) via p38 MAPK activation in response to M‐CSF. PPM1A expression in macrophages was decreased by Toll‐like receptor 4 activation (P < 0.05). The Ankylosing Spondylitis Disease Activity Score was negatively correlated with the expression of PPM1A in peripheral blood mononuclear cells from patients with axial spondyloarthritis (SpA) (γ = −0.7072, P < 0.0001). Conclusion The loss of PPM1A function in osteoclast precursors driven by inflammatory signals contributes to osteoclast lineage commitment and differentiation by elevating RANK expression, reflecting a potential role of PPM1A in dynamic bone metabolism in axial SpA.]]></description><identifier>ISSN: 2326-5191</identifier><identifier>EISSN: 2326-5205</identifier><identifier>DOI: 10.1002/art.41180</identifier><identifier>PMID: 31762216</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Acid phosphatase ; Acid phosphatase (tartrate-resistant) ; Acid resistance ; Activation ; Adult ; Animals ; Ankylosing spondylitis ; Ankylosis ; Arthritis ; Axial skeleton ; Biomedical materials ; Bone growth ; Bone marrow ; Bone mass ; Bone turnover ; Cell Differentiation ; Computed tomography ; Correlation analysis ; Differentiation ; Evaluation ; Female ; Flow cytometry ; Fluorescence ; Gene expression ; Humans ; Inflammation ; Inflammatory diseases ; Leukocytes (mononuclear) ; Macrophages ; Magnesium ; Male ; Metabolism ; Mice ; Mice, Knockout ; mRNA ; Osteoblastogenesis ; Osteoclastogenesis ; Osteoclasts - physiology ; Osteogenesis ; Osteoprogenitor cells ; Phenotypes ; Phosphatase ; Polymerase chain reaction ; Precursors ; Protein Phosphatase 2C - physiology ; Proteins ; RANK Ligand - physiology ; Toll-like receptors ; Western blotting</subject><ispartof>Arthritis &amp; rheumatology (Hoboken, N.J.), 2020-05, Vol.72 (5), p.750-760</ispartof><rights>2019, American College of Rheumatology</rights><rights>2019, American College of Rheumatology.</rights><rights>2020, American College of Rheumatology</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3530-10e4686fe317dced5f64d171cc30b28597d5f18de51c039900de2e61e4c3394a3</citedby><cites>FETCH-LOGICAL-c3530-10e4686fe317dced5f64d171cc30b28597d5f18de51c039900de2e61e4c3394a3</cites><orcidid>0000-0002-8029-7355 ; 0000-0002-3542-2276</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fart.41180$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fart.41180$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31762216$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kwon, Oh Chan</creatorcontrib><creatorcontrib>Choi, Bongkun</creatorcontrib><creatorcontrib>Lee, Eun‐Jin</creatorcontrib><creatorcontrib>Park, Ji‐Eun</creatorcontrib><creatorcontrib>Lee, Eun‐Ju</creatorcontrib><creatorcontrib>Kim, Eun‐Young</creatorcontrib><creatorcontrib>Kim, Sang‐Min</creatorcontrib><creatorcontrib>Shin, Min‐Kyung</creatorcontrib><creatorcontrib>Kim, Tae‐Hwan</creatorcontrib><creatorcontrib>Hong, Seokchan</creatorcontrib><creatorcontrib>Lee, Chang‐Keun</creatorcontrib><creatorcontrib>Yoo, Bin</creatorcontrib><creatorcontrib>Robinson, William H.</creatorcontrib><creatorcontrib>Kim, Yong‐Gil</creatorcontrib><creatorcontrib>Chang, Eun‐Ju</creatorcontrib><title>Negative Regulation of Osteoclast Commitment by Intracellular Protein Phosphatase Magnesium‐Dependent 1A</title><title>Arthritis &amp; rheumatology (Hoboken, N.J.)</title><addtitle>Arthritis Rheumatol</addtitle><description><![CDATA[Objective Increased protein phosphatase magnesium‐dependent 1A (PPM1A) levels in patients with ankylosing spondylitis regulate osteoblast differentiation in bony ankylosis; however, the potential mechanisms that regulate osteoclast differentiation in relation to abnormal bone formation remain unclear. This study was undertaken to investigate the relationship of PPM1A to osteoclast differentiation by generating conditional gene‐knockout (PPM1Afl/fl;LysM‐Cre) mice and evaluating their bone phenotype. Methods The bone phenotypes of LysM‐Cre mice (n = 6) and PPM1Afl/fl;LysM‐Cre mice (n = 6) were assessed by micro–computed tomography. Osteoclast differentiation was induced by culturing bone marrow–derived macrophages in the presence of RANKL and macrophage colony‐stimulating factor (M‐CSF), and was evaluated by counting tartrate‐resistant acid phosphatase–positive multinucleated cells. Levels of messenger RNA for PPM1A, RANK, and osteoclast‐specific genes were examined by real‐time quantitative polymerase chain reaction, and protein levels were determined by Western blotting. Surface RANK expression was analyzed by fluorescence flow cytometry. Results The PPM1Afl/fl;LysM‐Cre mice displayed reduced bone mass (P < 0.001) and increased osteoclast differentiation (P < 0.001) and osteoclast‐specific gene expression (P < 0.05) compared with their LysM‐Cre littermates. Mechanistically, reduced PPM1A function in osteoclast precursors in PPM1Afl/fl;LysM‐Cre mice induced osteoclast lineage commitment by up‐regulating RANK expression (P < 0.01) via p38 MAPK activation in response to M‐CSF. PPM1A expression in macrophages was decreased by Toll‐like receptor 4 activation (P < 0.05). The Ankylosing Spondylitis Disease Activity Score was negatively correlated with the expression of PPM1A in peripheral blood mononuclear cells from patients with axial spondyloarthritis (SpA) (γ = −0.7072, P < 0.0001). Conclusion The loss of PPM1A function in osteoclast precursors driven by inflammatory signals contributes to osteoclast lineage commitment and differentiation by elevating RANK expression, reflecting a potential role of PPM1A in dynamic bone metabolism in axial SpA.]]></description><subject>Acid phosphatase</subject><subject>Acid phosphatase (tartrate-resistant)</subject><subject>Acid resistance</subject><subject>Activation</subject><subject>Adult</subject><subject>Animals</subject><subject>Ankylosing spondylitis</subject><subject>Ankylosis</subject><subject>Arthritis</subject><subject>Axial skeleton</subject><subject>Biomedical materials</subject><subject>Bone growth</subject><subject>Bone marrow</subject><subject>Bone mass</subject><subject>Bone turnover</subject><subject>Cell Differentiation</subject><subject>Computed tomography</subject><subject>Correlation analysis</subject><subject>Differentiation</subject><subject>Evaluation</subject><subject>Female</subject><subject>Flow cytometry</subject><subject>Fluorescence</subject><subject>Gene expression</subject><subject>Humans</subject><subject>Inflammation</subject><subject>Inflammatory diseases</subject><subject>Leukocytes (mononuclear)</subject><subject>Macrophages</subject><subject>Magnesium</subject><subject>Male</subject><subject>Metabolism</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>mRNA</subject><subject>Osteoblastogenesis</subject><subject>Osteoclastogenesis</subject><subject>Osteoclasts - physiology</subject><subject>Osteogenesis</subject><subject>Osteoprogenitor cells</subject><subject>Phenotypes</subject><subject>Phosphatase</subject><subject>Polymerase chain reaction</subject><subject>Precursors</subject><subject>Protein Phosphatase 2C - physiology</subject><subject>Proteins</subject><subject>RANK Ligand - physiology</subject><subject>Toll-like receptors</subject><subject>Western blotting</subject><issn>2326-5191</issn><issn>2326-5205</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kctKAzEUhoMoKurCF5CAG11UT5KZdLIs9Qpeiuh6SDNn6pSZSU0ySnc-gs_ok5ja6kIwmxzCl4-f8xOyz-CEAfBT7cJJwlgGa2SbCy57KYd0_Wdmim2RPe-nEI_qg4R0k2wJ1pecM7lNpnc40aF6RfqAk66Oo22pLem9D2hNrX2gQ9s0VWiwDXQ8p9dtcNpgXUfY0ZGzAauWjp6tnz3roD3SWz1p0Vdd8_n-cYYzbIvFVzbYJRulrj3ure4d8nRx_ji86t3cX14PBzc9I1IBPQaYyEyWGEMWBou0lEnB-swYAWOepaofn1hWYMoMCKUACuQoGSZGCJVosUOOlt6Zsy8d-pA3lV8k1i3azuc8ipUEDllED_-gU9u5NqaLlEriklQqInW8pIyz3jss85mrGu3mOYN80UEeO8i_O4jswcrYjRssfsmfjUfgdAm8VTXO_zflg4fHpfILudeQ3Q</recordid><startdate>202005</startdate><enddate>202005</enddate><creator>Kwon, Oh Chan</creator><creator>Choi, Bongkun</creator><creator>Lee, Eun‐Jin</creator><creator>Park, Ji‐Eun</creator><creator>Lee, Eun‐Ju</creator><creator>Kim, Eun‐Young</creator><creator>Kim, Sang‐Min</creator><creator>Shin, Min‐Kyung</creator><creator>Kim, Tae‐Hwan</creator><creator>Hong, Seokchan</creator><creator>Lee, Chang‐Keun</creator><creator>Yoo, Bin</creator><creator>Robinson, William H.</creator><creator>Kim, Yong‐Gil</creator><creator>Chang, Eun‐Ju</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7T5</scope><scope>7TM</scope><scope>7U7</scope><scope>C1K</scope><scope>H94</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8029-7355</orcidid><orcidid>https://orcid.org/0000-0002-3542-2276</orcidid></search><sort><creationdate>202005</creationdate><title>Negative Regulation of Osteoclast Commitment by Intracellular Protein Phosphatase Magnesium‐Dependent 1A</title><author>Kwon, Oh Chan ; Choi, Bongkun ; Lee, Eun‐Jin ; Park, Ji‐Eun ; Lee, Eun‐Ju ; Kim, Eun‐Young ; Kim, Sang‐Min ; Shin, Min‐Kyung ; Kim, Tae‐Hwan ; Hong, Seokchan ; Lee, Chang‐Keun ; Yoo, Bin ; Robinson, William H. ; Kim, Yong‐Gil ; Chang, Eun‐Ju</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3530-10e4686fe317dced5f64d171cc30b28597d5f18de51c039900de2e61e4c3394a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Acid phosphatase</topic><topic>Acid phosphatase (tartrate-resistant)</topic><topic>Acid resistance</topic><topic>Activation</topic><topic>Adult</topic><topic>Animals</topic><topic>Ankylosing spondylitis</topic><topic>Ankylosis</topic><topic>Arthritis</topic><topic>Axial skeleton</topic><topic>Biomedical materials</topic><topic>Bone growth</topic><topic>Bone marrow</topic><topic>Bone mass</topic><topic>Bone turnover</topic><topic>Cell Differentiation</topic><topic>Computed tomography</topic><topic>Correlation analysis</topic><topic>Differentiation</topic><topic>Evaluation</topic><topic>Female</topic><topic>Flow cytometry</topic><topic>Fluorescence</topic><topic>Gene expression</topic><topic>Humans</topic><topic>Inflammation</topic><topic>Inflammatory diseases</topic><topic>Leukocytes (mononuclear)</topic><topic>Macrophages</topic><topic>Magnesium</topic><topic>Male</topic><topic>Metabolism</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>mRNA</topic><topic>Osteoblastogenesis</topic><topic>Osteoclastogenesis</topic><topic>Osteoclasts - physiology</topic><topic>Osteogenesis</topic><topic>Osteoprogenitor cells</topic><topic>Phenotypes</topic><topic>Phosphatase</topic><topic>Polymerase chain reaction</topic><topic>Precursors</topic><topic>Protein Phosphatase 2C - physiology</topic><topic>Proteins</topic><topic>RANK Ligand - physiology</topic><topic>Toll-like receptors</topic><topic>Western blotting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kwon, Oh Chan</creatorcontrib><creatorcontrib>Choi, Bongkun</creatorcontrib><creatorcontrib>Lee, Eun‐Jin</creatorcontrib><creatorcontrib>Park, Ji‐Eun</creatorcontrib><creatorcontrib>Lee, Eun‐Ju</creatorcontrib><creatorcontrib>Kim, Eun‐Young</creatorcontrib><creatorcontrib>Kim, Sang‐Min</creatorcontrib><creatorcontrib>Shin, Min‐Kyung</creatorcontrib><creatorcontrib>Kim, Tae‐Hwan</creatorcontrib><creatorcontrib>Hong, Seokchan</creatorcontrib><creatorcontrib>Lee, Chang‐Keun</creatorcontrib><creatorcontrib>Yoo, Bin</creatorcontrib><creatorcontrib>Robinson, William H.</creatorcontrib><creatorcontrib>Kim, Yong‐Gil</creatorcontrib><creatorcontrib>Chang, Eun‐Ju</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Arthritis &amp; rheumatology (Hoboken, N.J.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kwon, Oh Chan</au><au>Choi, Bongkun</au><au>Lee, Eun‐Jin</au><au>Park, Ji‐Eun</au><au>Lee, Eun‐Ju</au><au>Kim, Eun‐Young</au><au>Kim, Sang‐Min</au><au>Shin, Min‐Kyung</au><au>Kim, Tae‐Hwan</au><au>Hong, Seokchan</au><au>Lee, Chang‐Keun</au><au>Yoo, Bin</au><au>Robinson, William H.</au><au>Kim, Yong‐Gil</au><au>Chang, Eun‐Ju</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Negative Regulation of Osteoclast Commitment by Intracellular Protein Phosphatase Magnesium‐Dependent 1A</atitle><jtitle>Arthritis &amp; rheumatology (Hoboken, N.J.)</jtitle><addtitle>Arthritis Rheumatol</addtitle><date>2020-05</date><risdate>2020</risdate><volume>72</volume><issue>5</issue><spage>750</spage><epage>760</epage><pages>750-760</pages><issn>2326-5191</issn><eissn>2326-5205</eissn><abstract><![CDATA[Objective Increased protein phosphatase magnesium‐dependent 1A (PPM1A) levels in patients with ankylosing spondylitis regulate osteoblast differentiation in bony ankylosis; however, the potential mechanisms that regulate osteoclast differentiation in relation to abnormal bone formation remain unclear. This study was undertaken to investigate the relationship of PPM1A to osteoclast differentiation by generating conditional gene‐knockout (PPM1Afl/fl;LysM‐Cre) mice and evaluating their bone phenotype. Methods The bone phenotypes of LysM‐Cre mice (n = 6) and PPM1Afl/fl;LysM‐Cre mice (n = 6) were assessed by micro–computed tomography. Osteoclast differentiation was induced by culturing bone marrow–derived macrophages in the presence of RANKL and macrophage colony‐stimulating factor (M‐CSF), and was evaluated by counting tartrate‐resistant acid phosphatase–positive multinucleated cells. Levels of messenger RNA for PPM1A, RANK, and osteoclast‐specific genes were examined by real‐time quantitative polymerase chain reaction, and protein levels were determined by Western blotting. Surface RANK expression was analyzed by fluorescence flow cytometry. Results The PPM1Afl/fl;LysM‐Cre mice displayed reduced bone mass (P < 0.001) and increased osteoclast differentiation (P < 0.001) and osteoclast‐specific gene expression (P < 0.05) compared with their LysM‐Cre littermates. Mechanistically, reduced PPM1A function in osteoclast precursors in PPM1Afl/fl;LysM‐Cre mice induced osteoclast lineage commitment by up‐regulating RANK expression (P < 0.01) via p38 MAPK activation in response to M‐CSF. PPM1A expression in macrophages was decreased by Toll‐like receptor 4 activation (P < 0.05). The Ankylosing Spondylitis Disease Activity Score was negatively correlated with the expression of PPM1A in peripheral blood mononuclear cells from patients with axial spondyloarthritis (SpA) (γ = −0.7072, P < 0.0001). Conclusion The loss of PPM1A function in osteoclast precursors driven by inflammatory signals contributes to osteoclast lineage commitment and differentiation by elevating RANK expression, reflecting a potential role of PPM1A in dynamic bone metabolism in axial SpA.]]></abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>31762216</pmid><doi>10.1002/art.41180</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-8029-7355</orcidid><orcidid>https://orcid.org/0000-0002-3542-2276</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2326-5191
ispartof Arthritis & rheumatology (Hoboken, N.J.), 2020-05, Vol.72 (5), p.750-760
issn 2326-5191
2326-5205
language eng
recordid cdi_proquest_miscellaneous_2317960208
source MEDLINE; Wiley Online Library Journals Frontfile Complete; Alma/SFX Local Collection
subjects Acid phosphatase
Acid phosphatase (tartrate-resistant)
Acid resistance
Activation
Adult
Animals
Ankylosing spondylitis
Ankylosis
Arthritis
Axial skeleton
Biomedical materials
Bone growth
Bone marrow
Bone mass
Bone turnover
Cell Differentiation
Computed tomography
Correlation analysis
Differentiation
Evaluation
Female
Flow cytometry
Fluorescence
Gene expression
Humans
Inflammation
Inflammatory diseases
Leukocytes (mononuclear)
Macrophages
Magnesium
Male
Metabolism
Mice
Mice, Knockout
mRNA
Osteoblastogenesis
Osteoclastogenesis
Osteoclasts - physiology
Osteogenesis
Osteoprogenitor cells
Phenotypes
Phosphatase
Polymerase chain reaction
Precursors
Protein Phosphatase 2C - physiology
Proteins
RANK Ligand - physiology
Toll-like receptors
Western blotting
title Negative Regulation of Osteoclast Commitment by Intracellular Protein Phosphatase Magnesium‐Dependent 1A
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T05%3A32%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Negative%20Regulation%20of%20Osteoclast%20Commitment%20by%20Intracellular%20Protein%20Phosphatase%20Magnesium%E2%80%90Dependent%201A&rft.jtitle=Arthritis%20&%20rheumatology%20(Hoboken,%20N.J.)&rft.au=Kwon,%20Oh%20Chan&rft.date=2020-05&rft.volume=72&rft.issue=5&rft.spage=750&rft.epage=760&rft.pages=750-760&rft.issn=2326-5191&rft.eissn=2326-5205&rft_id=info:doi/10.1002/art.41180&rft_dat=%3Cproquest_cross%3E2317960208%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2394762953&rft_id=info:pmid/31762216&rfr_iscdi=true