Recyclable High‐Performance Polymer Electrolyte Based on a Modified Methyl Cellulose–Lithium Trifluoromethanesulfonate Salt Composite for Sustainable Energy Systems
Although energy‐storage devices based on Li ions are considered as the most prominent candidates for immediate application in the near future, concerns with regard to their stability, safety, and environmental impact still remain. As a solution, the development of all‐solid‐state energy‐storage devi...
Gespeichert in:
Veröffentlicht in: | ChemSusChem 2020-01, Vol.13 (2), p.376-384 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 384 |
---|---|
container_issue | 2 |
container_start_page | 376 |
container_title | ChemSusChem |
container_volume | 13 |
creator | Kim, Seong K. Yoon, Yeoheung Ryu, Ji Hyung Kim, Jeong Hui Ji, Seulgi Song, Wooseok Myung, Sung Lim, Jongsun Jung, Ha‐Kyun Lee, Sun Sook Lee, Jiseok An, Ki‐Seok |
description | Although energy‐storage devices based on Li ions are considered as the most prominent candidates for immediate application in the near future, concerns with regard to their stability, safety, and environmental impact still remain. As a solution, the development of all‐solid‐state energy‐storage devices with enhanced stability is proposed. A new eco‐friendly polymer electrolyte has been synthesized by incorporating lithium trifluoromethanesulfonate into chemically modified methyl cellulose (LiTFS–LiSMC). The transparent and flexible electrolyte exhibits a good conductivity of near 1 mS cm−1. An all‐solid‐state supercapacitor fabricated from 20 wt % LiTFS–LiSMC shows comparable specific capacitances to a standard liquid‐electrolyte supercapacitor and an excellent stability even after 20 000 charge–discharge cycles. The electrolyte is also compatible with patterned carbon, which enables the simple fabrication of micro‐supercapacitors. In addition, the LiTFS–LiSMC electrolyte can be recycled and reused more than 20 times with negligible change in its performance. Thus, it is a promising material for sustainable energy‐storage devices.
Reuse and recycle: A Li‐ion polymer electrolyte based on modified cellulose composited with lithium trifluoromethanesulfonate is developed (LiTFS–LiSMC). The electrolyte is highly transparent and flexible and has excellent ion transport properties. The compatibility of the electrolyte with standard carbon electrodes is excellent, thus, a high‐performance micro‐supercapacitor is fabricated. Additionally, the electrolyte and the supercapacitors are recyclable. |
doi_str_mv | 10.1002/cssc.201902756 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2317604453</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2341426350</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4106-5e191095e73b3e12e76a21c9bcaf65feb426073cd23ba637f0e17176f896b83</originalsourceid><addsrcrecordid>eNqFkc1O3DAUha2qqPy02y4rS910M4MdJ85kWaIpIA0CNSy6ixzPNWNkx4MdC2XHIyDxEjwXT4Jh6CB105V95M_nHvsg9JWSKSUkO5QhyGlGaEWysuAf0B6d8XxS8PzPx-2e0V20H8I1IZxUnH9Cu4yWRTrje-jxN8hRGtEZwCf6avV0d38BXjlvRS8BXzgzWvB4bkAOPokB8JEIsMSuxwKfuaVWOqkzGFajwTUYE40L8HT3sNDDSkeLL71WJjrvbGJEDyEa5XqRjBphBlw7u3ZBJ5mG4iaGQej-Nc68B3814mYMA9jwGe0oYQJ8eVsPUPNrflmfTBbnx6f1z8VE5pTwSQG0oqQqoGQdA5pByUVGZdVJoXihoMszTkomlxnrBGelIkBLWnI1q3g3Ywfox8Z17d1NhDC0VgeZXpWCuxjaLP0cJ3lesIR-_we9dtH3KVuicprmsIIkarqhpHcheFDt2msr_NhS0r402L402G4bTBe-vdnGzsJyi_-tLAHVBrjVBsb_2LV109Tv5s8S9K2G</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2341426350</pqid></control><display><type>article</type><title>Recyclable High‐Performance Polymer Electrolyte Based on a Modified Methyl Cellulose–Lithium Trifluoromethanesulfonate Salt Composite for Sustainable Energy Systems</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Kim, Seong K. ; Yoon, Yeoheung ; Ryu, Ji Hyung ; Kim, Jeong Hui ; Ji, Seulgi ; Song, Wooseok ; Myung, Sung ; Lim, Jongsun ; Jung, Ha‐Kyun ; Lee, Sun Sook ; Lee, Jiseok ; An, Ki‐Seok</creator><creatorcontrib>Kim, Seong K. ; Yoon, Yeoheung ; Ryu, Ji Hyung ; Kim, Jeong Hui ; Ji, Seulgi ; Song, Wooseok ; Myung, Sung ; Lim, Jongsun ; Jung, Ha‐Kyun ; Lee, Sun Sook ; Lee, Jiseok ; An, Ki‐Seok</creatorcontrib><description>Although energy‐storage devices based on Li ions are considered as the most prominent candidates for immediate application in the near future, concerns with regard to their stability, safety, and environmental impact still remain. As a solution, the development of all‐solid‐state energy‐storage devices with enhanced stability is proposed. A new eco‐friendly polymer electrolyte has been synthesized by incorporating lithium trifluoromethanesulfonate into chemically modified methyl cellulose (LiTFS–LiSMC). The transparent and flexible electrolyte exhibits a good conductivity of near 1 mS cm−1. An all‐solid‐state supercapacitor fabricated from 20 wt % LiTFS–LiSMC shows comparable specific capacitances to a standard liquid‐electrolyte supercapacitor and an excellent stability even after 20 000 charge–discharge cycles. The electrolyte is also compatible with patterned carbon, which enables the simple fabrication of micro‐supercapacitors. In addition, the LiTFS–LiSMC electrolyte can be recycled and reused more than 20 times with negligible change in its performance. Thus, it is a promising material for sustainable energy‐storage devices.
Reuse and recycle: A Li‐ion polymer electrolyte based on modified cellulose composited with lithium trifluoromethanesulfonate is developed (LiTFS–LiSMC). The electrolyte is highly transparent and flexible and has excellent ion transport properties. The compatibility of the electrolyte with standard carbon electrodes is excellent, thus, a high‐performance micro‐supercapacitor is fabricated. Additionally, the electrolyte and the supercapacitors are recyclable.</description><identifier>ISSN: 1864-5631</identifier><identifier>EISSN: 1864-564X</identifier><identifier>DOI: 10.1002/cssc.201902756</identifier><identifier>PMID: 31758646</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>biomass ; Cellulose ; electrochemistry ; Electrolytes ; Energy storage ; Environmental impact ; Lithium ; Organic chemistry ; Polymers ; Renewable energy ; renewable resources ; Stability ; Supercapacitors</subject><ispartof>ChemSusChem, 2020-01, Vol.13 (2), p.376-384</ispartof><rights>2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><rights>2020 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4106-5e191095e73b3e12e76a21c9bcaf65feb426073cd23ba637f0e17176f896b83</citedby><cites>FETCH-LOGICAL-c4106-5e191095e73b3e12e76a21c9bcaf65feb426073cd23ba637f0e17176f896b83</cites><orcidid>0000-0003-2463-0982</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcssc.201902756$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcssc.201902756$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31758646$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Seong K.</creatorcontrib><creatorcontrib>Yoon, Yeoheung</creatorcontrib><creatorcontrib>Ryu, Ji Hyung</creatorcontrib><creatorcontrib>Kim, Jeong Hui</creatorcontrib><creatorcontrib>Ji, Seulgi</creatorcontrib><creatorcontrib>Song, Wooseok</creatorcontrib><creatorcontrib>Myung, Sung</creatorcontrib><creatorcontrib>Lim, Jongsun</creatorcontrib><creatorcontrib>Jung, Ha‐Kyun</creatorcontrib><creatorcontrib>Lee, Sun Sook</creatorcontrib><creatorcontrib>Lee, Jiseok</creatorcontrib><creatorcontrib>An, Ki‐Seok</creatorcontrib><title>Recyclable High‐Performance Polymer Electrolyte Based on a Modified Methyl Cellulose–Lithium Trifluoromethanesulfonate Salt Composite for Sustainable Energy Systems</title><title>ChemSusChem</title><addtitle>ChemSusChem</addtitle><description>Although energy‐storage devices based on Li ions are considered as the most prominent candidates for immediate application in the near future, concerns with regard to their stability, safety, and environmental impact still remain. As a solution, the development of all‐solid‐state energy‐storage devices with enhanced stability is proposed. A new eco‐friendly polymer electrolyte has been synthesized by incorporating lithium trifluoromethanesulfonate into chemically modified methyl cellulose (LiTFS–LiSMC). The transparent and flexible electrolyte exhibits a good conductivity of near 1 mS cm−1. An all‐solid‐state supercapacitor fabricated from 20 wt % LiTFS–LiSMC shows comparable specific capacitances to a standard liquid‐electrolyte supercapacitor and an excellent stability even after 20 000 charge–discharge cycles. The electrolyte is also compatible with patterned carbon, which enables the simple fabrication of micro‐supercapacitors. In addition, the LiTFS–LiSMC electrolyte can be recycled and reused more than 20 times with negligible change in its performance. Thus, it is a promising material for sustainable energy‐storage devices.
Reuse and recycle: A Li‐ion polymer electrolyte based on modified cellulose composited with lithium trifluoromethanesulfonate is developed (LiTFS–LiSMC). The electrolyte is highly transparent and flexible and has excellent ion transport properties. The compatibility of the electrolyte with standard carbon electrodes is excellent, thus, a high‐performance micro‐supercapacitor is fabricated. Additionally, the electrolyte and the supercapacitors are recyclable.</description><subject>biomass</subject><subject>Cellulose</subject><subject>electrochemistry</subject><subject>Electrolytes</subject><subject>Energy storage</subject><subject>Environmental impact</subject><subject>Lithium</subject><subject>Organic chemistry</subject><subject>Polymers</subject><subject>Renewable energy</subject><subject>renewable resources</subject><subject>Stability</subject><subject>Supercapacitors</subject><issn>1864-5631</issn><issn>1864-564X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkc1O3DAUha2qqPy02y4rS910M4MdJ85kWaIpIA0CNSy6ixzPNWNkx4MdC2XHIyDxEjwXT4Jh6CB105V95M_nHvsg9JWSKSUkO5QhyGlGaEWysuAf0B6d8XxS8PzPx-2e0V20H8I1IZxUnH9Cu4yWRTrje-jxN8hRGtEZwCf6avV0d38BXjlvRS8BXzgzWvB4bkAOPokB8JEIsMSuxwKfuaVWOqkzGFajwTUYE40L8HT3sNDDSkeLL71WJjrvbGJEDyEa5XqRjBphBlw7u3ZBJ5mG4iaGQej-Nc68B3814mYMA9jwGe0oYQJ8eVsPUPNrflmfTBbnx6f1z8VE5pTwSQG0oqQqoGQdA5pByUVGZdVJoXihoMszTkomlxnrBGelIkBLWnI1q3g3Ywfox8Z17d1NhDC0VgeZXpWCuxjaLP0cJ3lesIR-_we9dtH3KVuicprmsIIkarqhpHcheFDt2msr_NhS0r402L402G4bTBe-vdnGzsJyi_-tLAHVBrjVBsb_2LV109Tv5s8S9K2G</recordid><startdate>20200119</startdate><enddate>20200119</enddate><creator>Kim, Seong K.</creator><creator>Yoon, Yeoheung</creator><creator>Ryu, Ji Hyung</creator><creator>Kim, Jeong Hui</creator><creator>Ji, Seulgi</creator><creator>Song, Wooseok</creator><creator>Myung, Sung</creator><creator>Lim, Jongsun</creator><creator>Jung, Ha‐Kyun</creator><creator>Lee, Sun Sook</creator><creator>Lee, Jiseok</creator><creator>An, Ki‐Seok</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2463-0982</orcidid></search><sort><creationdate>20200119</creationdate><title>Recyclable High‐Performance Polymer Electrolyte Based on a Modified Methyl Cellulose–Lithium Trifluoromethanesulfonate Salt Composite for Sustainable Energy Systems</title><author>Kim, Seong K. ; Yoon, Yeoheung ; Ryu, Ji Hyung ; Kim, Jeong Hui ; Ji, Seulgi ; Song, Wooseok ; Myung, Sung ; Lim, Jongsun ; Jung, Ha‐Kyun ; Lee, Sun Sook ; Lee, Jiseok ; An, Ki‐Seok</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4106-5e191095e73b3e12e76a21c9bcaf65feb426073cd23ba637f0e17176f896b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>biomass</topic><topic>Cellulose</topic><topic>electrochemistry</topic><topic>Electrolytes</topic><topic>Energy storage</topic><topic>Environmental impact</topic><topic>Lithium</topic><topic>Organic chemistry</topic><topic>Polymers</topic><topic>Renewable energy</topic><topic>renewable resources</topic><topic>Stability</topic><topic>Supercapacitors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Seong K.</creatorcontrib><creatorcontrib>Yoon, Yeoheung</creatorcontrib><creatorcontrib>Ryu, Ji Hyung</creatorcontrib><creatorcontrib>Kim, Jeong Hui</creatorcontrib><creatorcontrib>Ji, Seulgi</creatorcontrib><creatorcontrib>Song, Wooseok</creatorcontrib><creatorcontrib>Myung, Sung</creatorcontrib><creatorcontrib>Lim, Jongsun</creatorcontrib><creatorcontrib>Jung, Ha‐Kyun</creatorcontrib><creatorcontrib>Lee, Sun Sook</creatorcontrib><creatorcontrib>Lee, Jiseok</creatorcontrib><creatorcontrib>An, Ki‐Seok</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>ChemSusChem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Seong K.</au><au>Yoon, Yeoheung</au><au>Ryu, Ji Hyung</au><au>Kim, Jeong Hui</au><au>Ji, Seulgi</au><au>Song, Wooseok</au><au>Myung, Sung</au><au>Lim, Jongsun</au><au>Jung, Ha‐Kyun</au><au>Lee, Sun Sook</au><au>Lee, Jiseok</au><au>An, Ki‐Seok</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recyclable High‐Performance Polymer Electrolyte Based on a Modified Methyl Cellulose–Lithium Trifluoromethanesulfonate Salt Composite for Sustainable Energy Systems</atitle><jtitle>ChemSusChem</jtitle><addtitle>ChemSusChem</addtitle><date>2020-01-19</date><risdate>2020</risdate><volume>13</volume><issue>2</issue><spage>376</spage><epage>384</epage><pages>376-384</pages><issn>1864-5631</issn><eissn>1864-564X</eissn><abstract>Although energy‐storage devices based on Li ions are considered as the most prominent candidates for immediate application in the near future, concerns with regard to their stability, safety, and environmental impact still remain. As a solution, the development of all‐solid‐state energy‐storage devices with enhanced stability is proposed. A new eco‐friendly polymer electrolyte has been synthesized by incorporating lithium trifluoromethanesulfonate into chemically modified methyl cellulose (LiTFS–LiSMC). The transparent and flexible electrolyte exhibits a good conductivity of near 1 mS cm−1. An all‐solid‐state supercapacitor fabricated from 20 wt % LiTFS–LiSMC shows comparable specific capacitances to a standard liquid‐electrolyte supercapacitor and an excellent stability even after 20 000 charge–discharge cycles. The electrolyte is also compatible with patterned carbon, which enables the simple fabrication of micro‐supercapacitors. In addition, the LiTFS–LiSMC electrolyte can be recycled and reused more than 20 times with negligible change in its performance. Thus, it is a promising material for sustainable energy‐storage devices.
Reuse and recycle: A Li‐ion polymer electrolyte based on modified cellulose composited with lithium trifluoromethanesulfonate is developed (LiTFS–LiSMC). The electrolyte is highly transparent and flexible and has excellent ion transport properties. The compatibility of the electrolyte with standard carbon electrodes is excellent, thus, a high‐performance micro‐supercapacitor is fabricated. Additionally, the electrolyte and the supercapacitors are recyclable.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>31758646</pmid><doi>10.1002/cssc.201902756</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-2463-0982</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1864-5631 |
ispartof | ChemSusChem, 2020-01, Vol.13 (2), p.376-384 |
issn | 1864-5631 1864-564X |
language | eng |
recordid | cdi_proquest_miscellaneous_2317604453 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | biomass Cellulose electrochemistry Electrolytes Energy storage Environmental impact Lithium Organic chemistry Polymers Renewable energy renewable resources Stability Supercapacitors |
title | Recyclable High‐Performance Polymer Electrolyte Based on a Modified Methyl Cellulose–Lithium Trifluoromethanesulfonate Salt Composite for Sustainable Energy Systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T19%3A52%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recyclable%20High%E2%80%90Performance%20Polymer%20Electrolyte%20Based%20on%20a%20Modified%20Methyl%20Cellulose%E2%80%93Lithium%20Trifluoromethanesulfonate%20Salt%20Composite%20for%20Sustainable%20Energy%20Systems&rft.jtitle=ChemSusChem&rft.au=Kim,%20Seong%20K.&rft.date=2020-01-19&rft.volume=13&rft.issue=2&rft.spage=376&rft.epage=384&rft.pages=376-384&rft.issn=1864-5631&rft.eissn=1864-564X&rft_id=info:doi/10.1002/cssc.201902756&rft_dat=%3Cproquest_cross%3E2341426350%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2341426350&rft_id=info:pmid/31758646&rfr_iscdi=true |