Effect of Heat Treatment Temperature on the Spinning Structure and Properties of a Cu-Sn Alloy
A thin-walled copper (Cu)-tin (Sn) alloy cylinder was treated after spinning at 200-400°C for 0.5 h. The characteristics of the alloy microstructure under different temperatures were analyzed through electron back-scattered diffraction. The results were as follows. The grain size at 200-300°C decrea...
Gespeichert in:
Veröffentlicht in: | Microscopy and microanalysis 2020-02, Vol.26 (1), p.29-35 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 35 |
---|---|
container_issue | 1 |
container_start_page | 29 |
container_title | Microscopy and microanalysis |
container_volume | 26 |
creator | Liu, Jinli Zheng, Wenyuan Yin, Huiqin |
description | A thin-walled copper (Cu)-tin (Sn) alloy cylinder was treated after spinning at 200-400°C for 0.5 h. The characteristics of the alloy microstructure under different temperatures were analyzed through electron back-scattered diffraction. The results were as follows. The grain size at 200-300°C decreases as the heat treatment temperature rises, but the grain size at 400°C increases. At 200-300°C, the microstructure primarily consists of deformed grains. It is found that the main reason for the formation of high-angle grain boundaries (HAGBs) is static recrystallization. For the grain boundary orientation differential, the low-angle sub-grain boundary gradually grows into the HAGB, and multiple annealing twin Σ9 boundaries appear. Grain orientation is generally random at any temperature range. The mechanical property test indicated that, at the upper critical recrystallization temperature of 300°C, the elongation of the Cu-Sn alloy gradually increases, and its yield strength and ultimate tensile strength rapidly decrease. |
doi_str_mv | 10.1017/S1431927619015101 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2317598937</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2366286460</sourcerecordid><originalsourceid>FETCH-LOGICAL-c329t-2b060caea11b2f5982b527ad584fcb346c0dbe606ca708c0e15aa31db1101c13</originalsourceid><addsrcrecordid>eNplkMFOwzAMhiMEYmPwAFxQJC5cCnHTpu1xmgZDQgKpO1OlqQud2mQk7WFvT7oNDnCxLfvzL_sn5BrYPTBIHnKIOGRhIiBjEPvWCZn6VhykAPHpvoZgnE_IhXMbxhhniTgnEw5JzFmUTsn7sq5R9dTUdIWyp2vrY4faV9ht0cp-sEiNpv0n0nzbaN3oD5r3dlD7idQVfbPGk32DbpSRdDEEuabztjW7S3JWy9bh1THPyPpxuV6sgpfXp-fF_CVQPMz6ICyZYEqiBCjDOs7SsIzDRFZxGtWq5JFQrCpRMKFkwlLFEGIpOVQl-KcV8Bm5O8hurfka0PVF1ziFbSs1msEV4fhwlmY88ejtH3RjBqv9cZ4SIkxFJJin4EApa5yzWBdb23TS7gpgxeh98c97v3NzVB7KDqvfjR-z-TflY31N</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2366286460</pqid></control><display><type>article</type><title>Effect of Heat Treatment Temperature on the Spinning Structure and Properties of a Cu-Sn Alloy</title><source>Alma/SFX Local Collection</source><creator>Liu, Jinli ; Zheng, Wenyuan ; Yin, Huiqin</creator><creatorcontrib>Liu, Jinli ; Zheng, Wenyuan ; Yin, Huiqin</creatorcontrib><description>A thin-walled copper (Cu)-tin (Sn) alloy cylinder was treated after spinning at 200-400°C for 0.5 h. The characteristics of the alloy microstructure under different temperatures were analyzed through electron back-scattered diffraction. The results were as follows. The grain size at 200-300°C decreases as the heat treatment temperature rises, but the grain size at 400°C increases. At 200-300°C, the microstructure primarily consists of deformed grains. It is found that the main reason for the formation of high-angle grain boundaries (HAGBs) is static recrystallization. For the grain boundary orientation differential, the low-angle sub-grain boundary gradually grows into the HAGB, and multiple annealing twin Σ9 boundaries appear. Grain orientation is generally random at any temperature range. The mechanical property test indicated that, at the upper critical recrystallization temperature of 300°C, the elongation of the Cu-Sn alloy gradually increases, and its yield strength and ultimate tensile strength rapidly decrease.</description><identifier>ISSN: 1431-9276</identifier><identifier>EISSN: 1435-8115</identifier><identifier>DOI: 10.1017/S1431927619015101</identifier><identifier>PMID: 31753048</identifier><language>eng</language><publisher>United States: Oxford University Press</publisher><subject>Alloys ; Annealing ; Boundaries ; Copper ; Copper base alloys ; Corrosion resistance ; Cylinders ; Elongation ; Grain boundaries ; Grain orientation ; Grain size ; Heat treatment ; Metal forming ; Microstructure ; Particle size ; Recrystallization ; Tin ; Ultimate tensile strength</subject><ispartof>Microscopy and microanalysis, 2020-02, Vol.26 (1), p.29-35</ispartof><rights>Copyright © Microscopy Society of America 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c329t-2b060caea11b2f5982b527ad584fcb346c0dbe606ca708c0e15aa31db1101c13</citedby><cites>FETCH-LOGICAL-c329t-2b060caea11b2f5982b527ad584fcb346c0dbe606ca708c0e15aa31db1101c13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31753048$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Jinli</creatorcontrib><creatorcontrib>Zheng, Wenyuan</creatorcontrib><creatorcontrib>Yin, Huiqin</creatorcontrib><title>Effect of Heat Treatment Temperature on the Spinning Structure and Properties of a Cu-Sn Alloy</title><title>Microscopy and microanalysis</title><addtitle>Microsc Microanal</addtitle><description>A thin-walled copper (Cu)-tin (Sn) alloy cylinder was treated after spinning at 200-400°C for 0.5 h. The characteristics of the alloy microstructure under different temperatures were analyzed through electron back-scattered diffraction. The results were as follows. The grain size at 200-300°C decreases as the heat treatment temperature rises, but the grain size at 400°C increases. At 200-300°C, the microstructure primarily consists of deformed grains. It is found that the main reason for the formation of high-angle grain boundaries (HAGBs) is static recrystallization. For the grain boundary orientation differential, the low-angle sub-grain boundary gradually grows into the HAGB, and multiple annealing twin Σ9 boundaries appear. Grain orientation is generally random at any temperature range. The mechanical property test indicated that, at the upper critical recrystallization temperature of 300°C, the elongation of the Cu-Sn alloy gradually increases, and its yield strength and ultimate tensile strength rapidly decrease.</description><subject>Alloys</subject><subject>Annealing</subject><subject>Boundaries</subject><subject>Copper</subject><subject>Copper base alloys</subject><subject>Corrosion resistance</subject><subject>Cylinders</subject><subject>Elongation</subject><subject>Grain boundaries</subject><subject>Grain orientation</subject><subject>Grain size</subject><subject>Heat treatment</subject><subject>Metal forming</subject><subject>Microstructure</subject><subject>Particle size</subject><subject>Recrystallization</subject><subject>Tin</subject><subject>Ultimate tensile strength</subject><issn>1431-9276</issn><issn>1435-8115</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNplkMFOwzAMhiMEYmPwAFxQJC5cCnHTpu1xmgZDQgKpO1OlqQud2mQk7WFvT7oNDnCxLfvzL_sn5BrYPTBIHnKIOGRhIiBjEPvWCZn6VhykAPHpvoZgnE_IhXMbxhhniTgnEw5JzFmUTsn7sq5R9dTUdIWyp2vrY4faV9ht0cp-sEiNpv0n0nzbaN3oD5r3dlD7idQVfbPGk32DbpSRdDEEuabztjW7S3JWy9bh1THPyPpxuV6sgpfXp-fF_CVQPMz6ICyZYEqiBCjDOs7SsIzDRFZxGtWq5JFQrCpRMKFkwlLFEGIpOVQl-KcV8Bm5O8hurfka0PVF1ziFbSs1msEV4fhwlmY88ejtH3RjBqv9cZ4SIkxFJJin4EApa5yzWBdb23TS7gpgxeh98c97v3NzVB7KDqvfjR-z-TflY31N</recordid><startdate>202002</startdate><enddate>202002</enddate><creator>Liu, Jinli</creator><creator>Zheng, Wenyuan</creator><creator>Yin, Huiqin</creator><general>Oxford University Press</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7RV</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope></search><sort><creationdate>202002</creationdate><title>Effect of Heat Treatment Temperature on the Spinning Structure and Properties of a Cu-Sn Alloy</title><author>Liu, Jinli ; Zheng, Wenyuan ; Yin, Huiqin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c329t-2b060caea11b2f5982b527ad584fcb346c0dbe606ca708c0e15aa31db1101c13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Alloys</topic><topic>Annealing</topic><topic>Boundaries</topic><topic>Copper</topic><topic>Copper base alloys</topic><topic>Corrosion resistance</topic><topic>Cylinders</topic><topic>Elongation</topic><topic>Grain boundaries</topic><topic>Grain orientation</topic><topic>Grain size</topic><topic>Heat treatment</topic><topic>Metal forming</topic><topic>Microstructure</topic><topic>Particle size</topic><topic>Recrystallization</topic><topic>Tin</topic><topic>Ultimate tensile strength</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Jinli</creatorcontrib><creatorcontrib>Zheng, Wenyuan</creatorcontrib><creatorcontrib>Yin, Huiqin</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><jtitle>Microscopy and microanalysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Jinli</au><au>Zheng, Wenyuan</au><au>Yin, Huiqin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of Heat Treatment Temperature on the Spinning Structure and Properties of a Cu-Sn Alloy</atitle><jtitle>Microscopy and microanalysis</jtitle><addtitle>Microsc Microanal</addtitle><date>2020-02</date><risdate>2020</risdate><volume>26</volume><issue>1</issue><spage>29</spage><epage>35</epage><pages>29-35</pages><issn>1431-9276</issn><eissn>1435-8115</eissn><abstract>A thin-walled copper (Cu)-tin (Sn) alloy cylinder was treated after spinning at 200-400°C for 0.5 h. The characteristics of the alloy microstructure under different temperatures were analyzed through electron back-scattered diffraction. The results were as follows. The grain size at 200-300°C decreases as the heat treatment temperature rises, but the grain size at 400°C increases. At 200-300°C, the microstructure primarily consists of deformed grains. It is found that the main reason for the formation of high-angle grain boundaries (HAGBs) is static recrystallization. For the grain boundary orientation differential, the low-angle sub-grain boundary gradually grows into the HAGB, and multiple annealing twin Σ9 boundaries appear. Grain orientation is generally random at any temperature range. The mechanical property test indicated that, at the upper critical recrystallization temperature of 300°C, the elongation of the Cu-Sn alloy gradually increases, and its yield strength and ultimate tensile strength rapidly decrease.</abstract><cop>United States</cop><pub>Oxford University Press</pub><pmid>31753048</pmid><doi>10.1017/S1431927619015101</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1431-9276 |
ispartof | Microscopy and microanalysis, 2020-02, Vol.26 (1), p.29-35 |
issn | 1431-9276 1435-8115 |
language | eng |
recordid | cdi_proquest_miscellaneous_2317598937 |
source | Alma/SFX Local Collection |
subjects | Alloys Annealing Boundaries Copper Copper base alloys Corrosion resistance Cylinders Elongation Grain boundaries Grain orientation Grain size Heat treatment Metal forming Microstructure Particle size Recrystallization Tin Ultimate tensile strength |
title | Effect of Heat Treatment Temperature on the Spinning Structure and Properties of a Cu-Sn Alloy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T12%3A54%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20Heat%20Treatment%20Temperature%20on%20the%20Spinning%20Structure%20and%20Properties%20of%20a%20Cu-Sn%20Alloy&rft.jtitle=Microscopy%20and%20microanalysis&rft.au=Liu,%20Jinli&rft.date=2020-02&rft.volume=26&rft.issue=1&rft.spage=29&rft.epage=35&rft.pages=29-35&rft.issn=1431-9276&rft.eissn=1435-8115&rft_id=info:doi/10.1017/S1431927619015101&rft_dat=%3Cproquest_cross%3E2366286460%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2366286460&rft_id=info:pmid/31753048&rfr_iscdi=true |