Different inhibitory mechanisms of chlortetracycline and enrofloxacin on mesophilic anaerobic degradation of propionate
In anaerobic digestion, propionate is a key intermediate whose degradation is thermodynamically challenging and accumulation is detrimental to the process. Many wastewater streams contain antibiotics due to its globally increasing use, and these compounds can inhibit methane production. However, the...
Gespeichert in:
Veröffentlicht in: | Environmental science and pollution research international 2020, Vol.27 (2), p.1406-1416 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1416 |
---|---|
container_issue | 2 |
container_start_page | 1406 |
container_title | Environmental science and pollution research international |
container_volume | 27 |
creator | Gou, Min Wang, HuiZhong Li, Jie Sun, ZhaoYong Nie, Yong Nobu, Masaru Konishi Tang, YueQin |
description | In anaerobic digestion, propionate is a key intermediate whose degradation is thermodynamically challenging and accumulation is detrimental to the process. Many wastewater streams contain antibiotics due to its globally increasing use, and these compounds can inhibit methane production. However, the effect of antibiotics on propionate degradation in anaerobic digestion remains unclear. In this study, the influence of two antibiotics (chlortetracycline [CTC] and enrofloxacin [EFX]) on biogas production and mesophilic propionate-degrading microbial community was investigated. CTC strongly repressed propionate oxidation, acetate utilization, and methane production, while EFX only inhibited propionate oxidation and methane production to a lesser extent. Microbial community analyses showed that syntrophic propionate-oxidizing bacteria (SPOB)
Syntrophobacter
had strong tolerance to both CTC and EFX. CTC inhibition mainly acted on the activity of acetate-oxidizing bacteria (
Mesotoga
,
Geovibrio
,
Tepidanaerobacter
, unclassified Bacteroidetes, and unclassified Clostridia) and acetoclastic methanogen, while EFX inhibition applied to the SPOB
Smithella
and acetoclastic methanogen. Network analysis further indicated that more complicated correlation among bacterial genera occurred in CTC treatments. These results suggested that CTC and EFX inhibited propionate degradation via different mechanisms, which was the result of joint action by antibiotics and microbial interactions. |
doi_str_mv | 10.1007/s11356-019-06705-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2316434553</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2316434553</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-a5fd0332c4a573b2b5771535b998e7a543553afd389a5482c0f635af6e30e983</originalsourceid><addsrcrecordid>eNp9kU9P3DAQxS3UChbKF-CAIvXCJa3_xvER0QKVkHrhbjnOmDVK7MXOquy375SFIvXQ08xofu_NSI-QM0a_MEr118qYUF1LmWlpp6lq9QFZsY7JVktjPpAVNVK2TEh5RI5rfaSUU8P1ITkSTEvVU7Uiv77FEKBAWpqY1nGISy67Zga_dinWuTY5NH495bLAUpzf-SkmaFwaG0glhyk_Ox9TkxNqat6s4xQ9rh2UPGA3wkNxo1siAui0KXmDrVvgE_kY3FTh9LWekPvr7_dXt-3dz5sfV5d3rZeML61TYaRCcC-d0mLgg9KaKaEGY3rQTkmhlHBhFL3Boeeehk4oFzoQFEwvTsjF3hYvP22hLnaO1cM0uQR5Wy0XrJNCogmin_9BH_O2JHwOKdn3HdesQ4rvKV9yrQWC3ZQ4u7KzjNo_qdh9KhZTsS-pWI2i81fr7TDD-FfyFgMCYg9UXKUHKO-3_2P7G5QOmXQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2348862716</pqid></control><display><type>article</type><title>Different inhibitory mechanisms of chlortetracycline and enrofloxacin on mesophilic anaerobic degradation of propionate</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Gou, Min ; Wang, HuiZhong ; Li, Jie ; Sun, ZhaoYong ; Nie, Yong ; Nobu, Masaru Konishi ; Tang, YueQin</creator><creatorcontrib>Gou, Min ; Wang, HuiZhong ; Li, Jie ; Sun, ZhaoYong ; Nie, Yong ; Nobu, Masaru Konishi ; Tang, YueQin</creatorcontrib><description>In anaerobic digestion, propionate is a key intermediate whose degradation is thermodynamically challenging and accumulation is detrimental to the process. Many wastewater streams contain antibiotics due to its globally increasing use, and these compounds can inhibit methane production. However, the effect of antibiotics on propionate degradation in anaerobic digestion remains unclear. In this study, the influence of two antibiotics (chlortetracycline [CTC] and enrofloxacin [EFX]) on biogas production and mesophilic propionate-degrading microbial community was investigated. CTC strongly repressed propionate oxidation, acetate utilization, and methane production, while EFX only inhibited propionate oxidation and methane production to a lesser extent. Microbial community analyses showed that syntrophic propionate-oxidizing bacteria (SPOB)
Syntrophobacter
had strong tolerance to both CTC and EFX. CTC inhibition mainly acted on the activity of acetate-oxidizing bacteria (
Mesotoga
,
Geovibrio
,
Tepidanaerobacter
, unclassified Bacteroidetes, and unclassified Clostridia) and acetoclastic methanogen, while EFX inhibition applied to the SPOB
Smithella
and acetoclastic methanogen. Network analysis further indicated that more complicated correlation among bacterial genera occurred in CTC treatments. These results suggested that CTC and EFX inhibited propionate degradation via different mechanisms, which was the result of joint action by antibiotics and microbial interactions.</description><identifier>ISSN: 0944-1344</identifier><identifier>EISSN: 1614-7499</identifier><identifier>DOI: 10.1007/s11356-019-06705-7</identifier><identifier>PMID: 31745805</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Acetic acid ; Anaerobic digestion ; Anaerobiosis - drug effects ; Antibiotics ; Aquatic Pollution ; Atmospheric Protection/Air Quality Control/Air Pollution ; Bacteria ; Biodegradation ; Biogas ; Bioreactors ; Chlortetracycline ; Chlortetracycline - pharmacology ; Degradation ; Earth and Environmental Science ; Ecotoxicology ; Enrofloxacin ; Enrofloxacin - pharmacology ; Environment ; Environmental Chemistry ; Environmental Health ; Environmental science ; Methane ; Methane - metabolism ; Microorganisms ; Network analysis ; Oxidation ; Propionates - metabolism ; Propionic acid ; Refuse as fuel ; Research Article ; Waste Water Technology ; Wastewater ; Water Management ; Water Pollution Control</subject><ispartof>Environmental science and pollution research international, 2020, Vol.27 (2), p.1406-1416</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>Environmental Science and Pollution Research is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-a5fd0332c4a573b2b5771535b998e7a543553afd389a5482c0f635af6e30e983</citedby><cites>FETCH-LOGICAL-c412t-a5fd0332c4a573b2b5771535b998e7a543553afd389a5482c0f635af6e30e983</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11356-019-06705-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11356-019-06705-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31745805$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gou, Min</creatorcontrib><creatorcontrib>Wang, HuiZhong</creatorcontrib><creatorcontrib>Li, Jie</creatorcontrib><creatorcontrib>Sun, ZhaoYong</creatorcontrib><creatorcontrib>Nie, Yong</creatorcontrib><creatorcontrib>Nobu, Masaru Konishi</creatorcontrib><creatorcontrib>Tang, YueQin</creatorcontrib><title>Different inhibitory mechanisms of chlortetracycline and enrofloxacin on mesophilic anaerobic degradation of propionate</title><title>Environmental science and pollution research international</title><addtitle>Environ Sci Pollut Res</addtitle><addtitle>Environ Sci Pollut Res Int</addtitle><description>In anaerobic digestion, propionate is a key intermediate whose degradation is thermodynamically challenging and accumulation is detrimental to the process. Many wastewater streams contain antibiotics due to its globally increasing use, and these compounds can inhibit methane production. However, the effect of antibiotics on propionate degradation in anaerobic digestion remains unclear. In this study, the influence of two antibiotics (chlortetracycline [CTC] and enrofloxacin [EFX]) on biogas production and mesophilic propionate-degrading microbial community was investigated. CTC strongly repressed propionate oxidation, acetate utilization, and methane production, while EFX only inhibited propionate oxidation and methane production to a lesser extent. Microbial community analyses showed that syntrophic propionate-oxidizing bacteria (SPOB)
Syntrophobacter
had strong tolerance to both CTC and EFX. CTC inhibition mainly acted on the activity of acetate-oxidizing bacteria (
Mesotoga
,
Geovibrio
,
Tepidanaerobacter
, unclassified Bacteroidetes, and unclassified Clostridia) and acetoclastic methanogen, while EFX inhibition applied to the SPOB
Smithella
and acetoclastic methanogen. Network analysis further indicated that more complicated correlation among bacterial genera occurred in CTC treatments. These results suggested that CTC and EFX inhibited propionate degradation via different mechanisms, which was the result of joint action by antibiotics and microbial interactions.</description><subject>Acetic acid</subject><subject>Anaerobic digestion</subject><subject>Anaerobiosis - drug effects</subject><subject>Antibiotics</subject><subject>Aquatic Pollution</subject><subject>Atmospheric Protection/Air Quality Control/Air Pollution</subject><subject>Bacteria</subject><subject>Biodegradation</subject><subject>Biogas</subject><subject>Bioreactors</subject><subject>Chlortetracycline</subject><subject>Chlortetracycline - pharmacology</subject><subject>Degradation</subject><subject>Earth and Environmental Science</subject><subject>Ecotoxicology</subject><subject>Enrofloxacin</subject><subject>Enrofloxacin - pharmacology</subject><subject>Environment</subject><subject>Environmental Chemistry</subject><subject>Environmental Health</subject><subject>Environmental science</subject><subject>Methane</subject><subject>Methane - metabolism</subject><subject>Microorganisms</subject><subject>Network analysis</subject><subject>Oxidation</subject><subject>Propionates - metabolism</subject><subject>Propionic acid</subject><subject>Refuse as fuel</subject><subject>Research Article</subject><subject>Waste Water Technology</subject><subject>Wastewater</subject><subject>Water Management</subject><subject>Water Pollution Control</subject><issn>0944-1344</issn><issn>1614-7499</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kU9P3DAQxS3UChbKF-CAIvXCJa3_xvER0QKVkHrhbjnOmDVK7MXOquy375SFIvXQ08xofu_NSI-QM0a_MEr118qYUF1LmWlpp6lq9QFZsY7JVktjPpAVNVK2TEh5RI5rfaSUU8P1ITkSTEvVU7Uiv77FEKBAWpqY1nGISy67Zga_dinWuTY5NH495bLAUpzf-SkmaFwaG0glhyk_Ox9TkxNqat6s4xQ9rh2UPGA3wkNxo1siAui0KXmDrVvgE_kY3FTh9LWekPvr7_dXt-3dz5sfV5d3rZeML61TYaRCcC-d0mLgg9KaKaEGY3rQTkmhlHBhFL3Boeeehk4oFzoQFEwvTsjF3hYvP22hLnaO1cM0uQR5Wy0XrJNCogmin_9BH_O2JHwOKdn3HdesQ4rvKV9yrQWC3ZQ4u7KzjNo_qdh9KhZTsS-pWI2i81fr7TDD-FfyFgMCYg9UXKUHKO-3_2P7G5QOmXQ</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Gou, Min</creator><creator>Wang, HuiZhong</creator><creator>Li, Jie</creator><creator>Sun, ZhaoYong</creator><creator>Nie, Yong</creator><creator>Nobu, Masaru Konishi</creator><creator>Tang, YueQin</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7SN</scope><scope>7T7</scope><scope>7TV</scope><scope>7U7</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>P64</scope><scope>PATMY</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>2020</creationdate><title>Different inhibitory mechanisms of chlortetracycline and enrofloxacin on mesophilic anaerobic degradation of propionate</title><author>Gou, Min ; Wang, HuiZhong ; Li, Jie ; Sun, ZhaoYong ; Nie, Yong ; Nobu, Masaru Konishi ; Tang, YueQin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-a5fd0332c4a573b2b5771535b998e7a543553afd389a5482c0f635af6e30e983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Acetic acid</topic><topic>Anaerobic digestion</topic><topic>Anaerobiosis - drug effects</topic><topic>Antibiotics</topic><topic>Aquatic Pollution</topic><topic>Atmospheric Protection/Air Quality Control/Air Pollution</topic><topic>Bacteria</topic><topic>Biodegradation</topic><topic>Biogas</topic><topic>Bioreactors</topic><topic>Chlortetracycline</topic><topic>Chlortetracycline - pharmacology</topic><topic>Degradation</topic><topic>Earth and Environmental Science</topic><topic>Ecotoxicology</topic><topic>Enrofloxacin</topic><topic>Enrofloxacin - pharmacology</topic><topic>Environment</topic><topic>Environmental Chemistry</topic><topic>Environmental Health</topic><topic>Environmental science</topic><topic>Methane</topic><topic>Methane - metabolism</topic><topic>Microorganisms</topic><topic>Network analysis</topic><topic>Oxidation</topic><topic>Propionates - metabolism</topic><topic>Propionic acid</topic><topic>Refuse as fuel</topic><topic>Research Article</topic><topic>Waste Water Technology</topic><topic>Wastewater</topic><topic>Water Management</topic><topic>Water Pollution Control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gou, Min</creatorcontrib><creatorcontrib>Wang, HuiZhong</creatorcontrib><creatorcontrib>Li, Jie</creatorcontrib><creatorcontrib>Sun, ZhaoYong</creatorcontrib><creatorcontrib>Nie, Yong</creatorcontrib><creatorcontrib>Nobu, Masaru Konishi</creatorcontrib><creatorcontrib>Tang, YueQin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Pollution Abstracts</collection><collection>Toxicology Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Environmental science and pollution research international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gou, Min</au><au>Wang, HuiZhong</au><au>Li, Jie</au><au>Sun, ZhaoYong</au><au>Nie, Yong</au><au>Nobu, Masaru Konishi</au><au>Tang, YueQin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Different inhibitory mechanisms of chlortetracycline and enrofloxacin on mesophilic anaerobic degradation of propionate</atitle><jtitle>Environmental science and pollution research international</jtitle><stitle>Environ Sci Pollut Res</stitle><addtitle>Environ Sci Pollut Res Int</addtitle><date>2020</date><risdate>2020</risdate><volume>27</volume><issue>2</issue><spage>1406</spage><epage>1416</epage><pages>1406-1416</pages><issn>0944-1344</issn><eissn>1614-7499</eissn><abstract>In anaerobic digestion, propionate is a key intermediate whose degradation is thermodynamically challenging and accumulation is detrimental to the process. Many wastewater streams contain antibiotics due to its globally increasing use, and these compounds can inhibit methane production. However, the effect of antibiotics on propionate degradation in anaerobic digestion remains unclear. In this study, the influence of two antibiotics (chlortetracycline [CTC] and enrofloxacin [EFX]) on biogas production and mesophilic propionate-degrading microbial community was investigated. CTC strongly repressed propionate oxidation, acetate utilization, and methane production, while EFX only inhibited propionate oxidation and methane production to a lesser extent. Microbial community analyses showed that syntrophic propionate-oxidizing bacteria (SPOB)
Syntrophobacter
had strong tolerance to both CTC and EFX. CTC inhibition mainly acted on the activity of acetate-oxidizing bacteria (
Mesotoga
,
Geovibrio
,
Tepidanaerobacter
, unclassified Bacteroidetes, and unclassified Clostridia) and acetoclastic methanogen, while EFX inhibition applied to the SPOB
Smithella
and acetoclastic methanogen. Network analysis further indicated that more complicated correlation among bacterial genera occurred in CTC treatments. These results suggested that CTC and EFX inhibited propionate degradation via different mechanisms, which was the result of joint action by antibiotics and microbial interactions.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>31745805</pmid><doi>10.1007/s11356-019-06705-7</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0944-1344 |
ispartof | Environmental science and pollution research international, 2020, Vol.27 (2), p.1406-1416 |
issn | 0944-1344 1614-7499 |
language | eng |
recordid | cdi_proquest_miscellaneous_2316434553 |
source | MEDLINE; Springer Nature - Complete Springer Journals |
subjects | Acetic acid Anaerobic digestion Anaerobiosis - drug effects Antibiotics Aquatic Pollution Atmospheric Protection/Air Quality Control/Air Pollution Bacteria Biodegradation Biogas Bioreactors Chlortetracycline Chlortetracycline - pharmacology Degradation Earth and Environmental Science Ecotoxicology Enrofloxacin Enrofloxacin - pharmacology Environment Environmental Chemistry Environmental Health Environmental science Methane Methane - metabolism Microorganisms Network analysis Oxidation Propionates - metabolism Propionic acid Refuse as fuel Research Article Waste Water Technology Wastewater Water Management Water Pollution Control |
title | Different inhibitory mechanisms of chlortetracycline and enrofloxacin on mesophilic anaerobic degradation of propionate |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T02%3A34%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Different%20inhibitory%20mechanisms%20of%20chlortetracycline%20and%20enrofloxacin%20on%20mesophilic%20anaerobic%20degradation%20of%20propionate&rft.jtitle=Environmental%20science%20and%20pollution%20research%20international&rft.au=Gou,%20Min&rft.date=2020&rft.volume=27&rft.issue=2&rft.spage=1406&rft.epage=1416&rft.pages=1406-1416&rft.issn=0944-1344&rft.eissn=1614-7499&rft_id=info:doi/10.1007/s11356-019-06705-7&rft_dat=%3Cproquest_cross%3E2316434553%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2348862716&rft_id=info:pmid/31745805&rfr_iscdi=true |