Long and short isoforms of c-FLIP act as control checkpoints of DED filament assembly

The assembly of the death-inducing signaling complex (DISC) and death effector domain (DED) filaments at CD95/Fas initiates extrinsic apoptosis. Procaspase-8 activation at the DED filaments is controlled by short and long c-FLIP isoforms. Despite apparent progress in understanding the assembly of CD...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Oncogene 2020-02, Vol.39 (8), p.1756-1772
Hauptverfasser: Hillert, Laura K., Ivanisenko, Nikita V., Espe, Johannes, König, Corinna, Ivanisenko, Vladimir A., Kähne, Thilo, Lavrik, Inna N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1772
container_issue 8
container_start_page 1756
container_title Oncogene
container_volume 39
creator Hillert, Laura K.
Ivanisenko, Nikita V.
Espe, Johannes
König, Corinna
Ivanisenko, Vladimir A.
Kähne, Thilo
Lavrik, Inna N.
description The assembly of the death-inducing signaling complex (DISC) and death effector domain (DED) filaments at CD95/Fas initiates extrinsic apoptosis. Procaspase-8 activation at the DED filaments is controlled by short and long c-FLIP isoforms. Despite apparent progress in understanding the assembly of CD95-activated platforms and DED filaments, the detailed molecular mechanism of c-FLIP action remains elusive. Here, we further addressed the mechanisms of c-FLIP action at the DISC using biochemical assays, quantitative mass spectrometry, and structural modeling. Our data strongly indicate that c-FLIP can bind to both FADD and procaspase-8 at the DED filament. Moreover, the constructed in silico model shows that c-FLIP proteins can lead to the formation of the DISCs comprising short DED filaments as well as serve as bridging motifs for building a cooperative DISC network, in which adjacent CD95 DISCs are connected by DED filaments. This network is based on selective interactions of FADD with both c-FLIP and procaspase-8. Hence, c-FLIP proteins at the DISC control initiation, elongation, and composition of DED filaments, playing the role of control checkpoints. These findings provide new insights into DISC and DED filament regulation and open innovative possibilities for targeting the extrinsic apoptosis pathway.
doi_str_mv 10.1038/s41388-019-1100-3
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2315969085</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A618257364</galeid><sourcerecordid>A618257364</sourcerecordid><originalsourceid>FETCH-LOGICAL-c533t-242d375a54c727bb79776d74f188fbc67772f60aa6ad55255171e6b7c42e47cf3</originalsourceid><addsrcrecordid>eNp9kTtvFDEUhS0EIpvAD6BBlmhoHPy-4zLKg0RaCQpSWx6PvZkwYy_2bJF_j5cNRCBALm7h79zHOQi9YfSUUdF9qJKJriOUGcIYpUQ8QysmQROljHyOVtQoSgwX_Agd13pPKQVD-Ut0JBhICmBW6Had0wa7NOB6l8uCx5pjLnPFOWJPrtY3n7HzC3YV-5yWkifs74L_us1jWn5AF5cXOI6Tm0PaYzXM_fTwCr2Ibqrh9WM9QbdXl1_Or8n608eb87M18UqIhXDJBwHKKemBQ9-DAdADyMi6LvZeAwCPmjqn3aAUV4oBC7oHL3mQ4KM4Qe8Pfbclf9uFuth5rD5Mk0sh76rlgimjDe1UQ9_9gd7nXUltO8ubZSAMdPq_lFBGaGMEf6I2bgp2TDEvxfn9aHumWccVCC0bdfoXqr0hzGNzMzTbwu8CdhD4kmstIdptGWdXHiyjdh-4PQRuW-B2H7gVTfP2ceFdP4fhl-Jnwg3gB6C2r7QJ5emif3f9DnuqsNA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2359369932</pqid></control><display><type>article</type><title>Long and short isoforms of c-FLIP act as control checkpoints of DED filament assembly</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Hillert, Laura K. ; Ivanisenko, Nikita V. ; Espe, Johannes ; König, Corinna ; Ivanisenko, Vladimir A. ; Kähne, Thilo ; Lavrik, Inna N.</creator><creatorcontrib>Hillert, Laura K. ; Ivanisenko, Nikita V. ; Espe, Johannes ; König, Corinna ; Ivanisenko, Vladimir A. ; Kähne, Thilo ; Lavrik, Inna N.</creatorcontrib><description>The assembly of the death-inducing signaling complex (DISC) and death effector domain (DED) filaments at CD95/Fas initiates extrinsic apoptosis. Procaspase-8 activation at the DED filaments is controlled by short and long c-FLIP isoforms. Despite apparent progress in understanding the assembly of CD95-activated platforms and DED filaments, the detailed molecular mechanism of c-FLIP action remains elusive. Here, we further addressed the mechanisms of c-FLIP action at the DISC using biochemical assays, quantitative mass spectrometry, and structural modeling. Our data strongly indicate that c-FLIP can bind to both FADD and procaspase-8 at the DED filament. Moreover, the constructed in silico model shows that c-FLIP proteins can lead to the formation of the DISCs comprising short DED filaments as well as serve as bridging motifs for building a cooperative DISC network, in which adjacent CD95 DISCs are connected by DED filaments. This network is based on selective interactions of FADD with both c-FLIP and procaspase-8. Hence, c-FLIP proteins at the DISC control initiation, elongation, and composition of DED filaments, playing the role of control checkpoints. These findings provide new insights into DISC and DED filament regulation and open innovative possibilities for targeting the extrinsic apoptosis pathway.</description><identifier>ISSN: 0950-9232</identifier><identifier>EISSN: 1476-5594</identifier><identifier>DOI: 10.1038/s41388-019-1100-3</identifier><identifier>PMID: 31740779</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>101/58 ; 631/45/475 ; 631/80/82/23 ; 96 ; 96/1 ; 96/2 ; 96/31 ; 96/95 ; Amino Acid Sequence ; Apoptosis ; c-FLIP protein ; CASP8 and FADD-Like Apoptosis Regulating Protein - chemistry ; CASP8 and FADD-Like Apoptosis Regulating Protein - metabolism ; CD95 antigen ; Cell Biology ; Cellular proteins ; Death Domain Receptor Signaling Adaptor Proteins - metabolism ; Death Effector Domain ; FADD protein ; fas Receptor - metabolism ; Filaments ; FLIP protein ; Gene expression ; Genetic aspects ; Health aspects ; HeLa Cells ; Human Genetics ; Humans ; Internal Medicine ; Isoforms ; Jurkat Cells ; Mass spectroscopy ; Medicine ; Medicine &amp; Public Health ; Models, Molecular ; Oncology ; Protein Isoforms - metabolism ; Protein Transport</subject><ispartof>Oncogene, 2020-02, Vol.39 (8), p.1756-1772</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2019</rights><rights>COPYRIGHT 2020 Nature Publishing Group</rights><rights>2019© The Author(s), under exclusive licence to Springer Nature Limited 2019</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c533t-242d375a54c727bb79776d74f188fbc67772f60aa6ad55255171e6b7c42e47cf3</citedby><cites>FETCH-LOGICAL-c533t-242d375a54c727bb79776d74f188fbc67772f60aa6ad55255171e6b7c42e47cf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41388-019-1100-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41388-019-1100-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31740779$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hillert, Laura K.</creatorcontrib><creatorcontrib>Ivanisenko, Nikita V.</creatorcontrib><creatorcontrib>Espe, Johannes</creatorcontrib><creatorcontrib>König, Corinna</creatorcontrib><creatorcontrib>Ivanisenko, Vladimir A.</creatorcontrib><creatorcontrib>Kähne, Thilo</creatorcontrib><creatorcontrib>Lavrik, Inna N.</creatorcontrib><title>Long and short isoforms of c-FLIP act as control checkpoints of DED filament assembly</title><title>Oncogene</title><addtitle>Oncogene</addtitle><addtitle>Oncogene</addtitle><description>The assembly of the death-inducing signaling complex (DISC) and death effector domain (DED) filaments at CD95/Fas initiates extrinsic apoptosis. Procaspase-8 activation at the DED filaments is controlled by short and long c-FLIP isoforms. Despite apparent progress in understanding the assembly of CD95-activated platforms and DED filaments, the detailed molecular mechanism of c-FLIP action remains elusive. Here, we further addressed the mechanisms of c-FLIP action at the DISC using biochemical assays, quantitative mass spectrometry, and structural modeling. Our data strongly indicate that c-FLIP can bind to both FADD and procaspase-8 at the DED filament. Moreover, the constructed in silico model shows that c-FLIP proteins can lead to the formation of the DISCs comprising short DED filaments as well as serve as bridging motifs for building a cooperative DISC network, in which adjacent CD95 DISCs are connected by DED filaments. This network is based on selective interactions of FADD with both c-FLIP and procaspase-8. Hence, c-FLIP proteins at the DISC control initiation, elongation, and composition of DED filaments, playing the role of control checkpoints. These findings provide new insights into DISC and DED filament regulation and open innovative possibilities for targeting the extrinsic apoptosis pathway.</description><subject>101/58</subject><subject>631/45/475</subject><subject>631/80/82/23</subject><subject>96</subject><subject>96/1</subject><subject>96/2</subject><subject>96/31</subject><subject>96/95</subject><subject>Amino Acid Sequence</subject><subject>Apoptosis</subject><subject>c-FLIP protein</subject><subject>CASP8 and FADD-Like Apoptosis Regulating Protein - chemistry</subject><subject>CASP8 and FADD-Like Apoptosis Regulating Protein - metabolism</subject><subject>CD95 antigen</subject><subject>Cell Biology</subject><subject>Cellular proteins</subject><subject>Death Domain Receptor Signaling Adaptor Proteins - metabolism</subject><subject>Death Effector Domain</subject><subject>FADD protein</subject><subject>fas Receptor - metabolism</subject><subject>Filaments</subject><subject>FLIP protein</subject><subject>Gene expression</subject><subject>Genetic aspects</subject><subject>Health aspects</subject><subject>HeLa Cells</subject><subject>Human Genetics</subject><subject>Humans</subject><subject>Internal Medicine</subject><subject>Isoforms</subject><subject>Jurkat Cells</subject><subject>Mass spectroscopy</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Models, Molecular</subject><subject>Oncology</subject><subject>Protein Isoforms - metabolism</subject><subject>Protein Transport</subject><issn>0950-9232</issn><issn>1476-5594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kTtvFDEUhS0EIpvAD6BBlmhoHPy-4zLKg0RaCQpSWx6PvZkwYy_2bJF_j5cNRCBALm7h79zHOQi9YfSUUdF9qJKJriOUGcIYpUQ8QysmQROljHyOVtQoSgwX_Agd13pPKQVD-Ut0JBhICmBW6Had0wa7NOB6l8uCx5pjLnPFOWJPrtY3n7HzC3YV-5yWkifs74L_us1jWn5AF5cXOI6Tm0PaYzXM_fTwCr2Ibqrh9WM9QbdXl1_Or8n608eb87M18UqIhXDJBwHKKemBQ9-DAdADyMi6LvZeAwCPmjqn3aAUV4oBC7oHL3mQ4KM4Qe8Pfbclf9uFuth5rD5Mk0sh76rlgimjDe1UQ9_9gd7nXUltO8ubZSAMdPq_lFBGaGMEf6I2bgp2TDEvxfn9aHumWccVCC0bdfoXqr0hzGNzMzTbwu8CdhD4kmstIdptGWdXHiyjdh-4PQRuW-B2H7gVTfP2ceFdP4fhl-Jnwg3gB6C2r7QJ5emif3f9DnuqsNA</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Hillert, Laura K.</creator><creator>Ivanisenko, Nikita V.</creator><creator>Espe, Johannes</creator><creator>König, Corinna</creator><creator>Ivanisenko, Vladimir A.</creator><creator>Kähne, Thilo</creator><creator>Lavrik, Inna N.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20200201</creationdate><title>Long and short isoforms of c-FLIP act as control checkpoints of DED filament assembly</title><author>Hillert, Laura K. ; Ivanisenko, Nikita V. ; Espe, Johannes ; König, Corinna ; Ivanisenko, Vladimir A. ; Kähne, Thilo ; Lavrik, Inna N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c533t-242d375a54c727bb79776d74f188fbc67772f60aa6ad55255171e6b7c42e47cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>101/58</topic><topic>631/45/475</topic><topic>631/80/82/23</topic><topic>96</topic><topic>96/1</topic><topic>96/2</topic><topic>96/31</topic><topic>96/95</topic><topic>Amino Acid Sequence</topic><topic>Apoptosis</topic><topic>c-FLIP protein</topic><topic>CASP8 and FADD-Like Apoptosis Regulating Protein - chemistry</topic><topic>CASP8 and FADD-Like Apoptosis Regulating Protein - metabolism</topic><topic>CD95 antigen</topic><topic>Cell Biology</topic><topic>Cellular proteins</topic><topic>Death Domain Receptor Signaling Adaptor Proteins - metabolism</topic><topic>Death Effector Domain</topic><topic>FADD protein</topic><topic>fas Receptor - metabolism</topic><topic>Filaments</topic><topic>FLIP protein</topic><topic>Gene expression</topic><topic>Genetic aspects</topic><topic>Health aspects</topic><topic>HeLa Cells</topic><topic>Human Genetics</topic><topic>Humans</topic><topic>Internal Medicine</topic><topic>Isoforms</topic><topic>Jurkat Cells</topic><topic>Mass spectroscopy</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Models, Molecular</topic><topic>Oncology</topic><topic>Protein Isoforms - metabolism</topic><topic>Protein Transport</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hillert, Laura K.</creatorcontrib><creatorcontrib>Ivanisenko, Nikita V.</creatorcontrib><creatorcontrib>Espe, Johannes</creatorcontrib><creatorcontrib>König, Corinna</creatorcontrib><creatorcontrib>Ivanisenko, Vladimir A.</creatorcontrib><creatorcontrib>Kähne, Thilo</creatorcontrib><creatorcontrib>Lavrik, Inna N.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Oncogene</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hillert, Laura K.</au><au>Ivanisenko, Nikita V.</au><au>Espe, Johannes</au><au>König, Corinna</au><au>Ivanisenko, Vladimir A.</au><au>Kähne, Thilo</au><au>Lavrik, Inna N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Long and short isoforms of c-FLIP act as control checkpoints of DED filament assembly</atitle><jtitle>Oncogene</jtitle><stitle>Oncogene</stitle><addtitle>Oncogene</addtitle><date>2020-02-01</date><risdate>2020</risdate><volume>39</volume><issue>8</issue><spage>1756</spage><epage>1772</epage><pages>1756-1772</pages><issn>0950-9232</issn><eissn>1476-5594</eissn><abstract>The assembly of the death-inducing signaling complex (DISC) and death effector domain (DED) filaments at CD95/Fas initiates extrinsic apoptosis. Procaspase-8 activation at the DED filaments is controlled by short and long c-FLIP isoforms. Despite apparent progress in understanding the assembly of CD95-activated platforms and DED filaments, the detailed molecular mechanism of c-FLIP action remains elusive. Here, we further addressed the mechanisms of c-FLIP action at the DISC using biochemical assays, quantitative mass spectrometry, and structural modeling. Our data strongly indicate that c-FLIP can bind to both FADD and procaspase-8 at the DED filament. Moreover, the constructed in silico model shows that c-FLIP proteins can lead to the formation of the DISCs comprising short DED filaments as well as serve as bridging motifs for building a cooperative DISC network, in which adjacent CD95 DISCs are connected by DED filaments. This network is based on selective interactions of FADD with both c-FLIP and procaspase-8. Hence, c-FLIP proteins at the DISC control initiation, elongation, and composition of DED filaments, playing the role of control checkpoints. These findings provide new insights into DISC and DED filament regulation and open innovative possibilities for targeting the extrinsic apoptosis pathway.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31740779</pmid><doi>10.1038/s41388-019-1100-3</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0950-9232
ispartof Oncogene, 2020-02, Vol.39 (8), p.1756-1772
issn 0950-9232
1476-5594
language eng
recordid cdi_proquest_miscellaneous_2315969085
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects 101/58
631/45/475
631/80/82/23
96
96/1
96/2
96/31
96/95
Amino Acid Sequence
Apoptosis
c-FLIP protein
CASP8 and FADD-Like Apoptosis Regulating Protein - chemistry
CASP8 and FADD-Like Apoptosis Regulating Protein - metabolism
CD95 antigen
Cell Biology
Cellular proteins
Death Domain Receptor Signaling Adaptor Proteins - metabolism
Death Effector Domain
FADD protein
fas Receptor - metabolism
Filaments
FLIP protein
Gene expression
Genetic aspects
Health aspects
HeLa Cells
Human Genetics
Humans
Internal Medicine
Isoforms
Jurkat Cells
Mass spectroscopy
Medicine
Medicine & Public Health
Models, Molecular
Oncology
Protein Isoforms - metabolism
Protein Transport
title Long and short isoforms of c-FLIP act as control checkpoints of DED filament assembly
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T21%3A32%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Long%20and%20short%20isoforms%20of%20c-FLIP%20act%20as%20control%20checkpoints%20of%20DED%20filament%20assembly&rft.jtitle=Oncogene&rft.au=Hillert,%20Laura%20K.&rft.date=2020-02-01&rft.volume=39&rft.issue=8&rft.spage=1756&rft.epage=1772&rft.pages=1756-1772&rft.issn=0950-9232&rft.eissn=1476-5594&rft_id=info:doi/10.1038/s41388-019-1100-3&rft_dat=%3Cgale_proqu%3EA618257364%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2359369932&rft_id=info:pmid/31740779&rft_galeid=A618257364&rfr_iscdi=true