Long and short isoforms of c-FLIP act as control checkpoints of DED filament assembly
The assembly of the death-inducing signaling complex (DISC) and death effector domain (DED) filaments at CD95/Fas initiates extrinsic apoptosis. Procaspase-8 activation at the DED filaments is controlled by short and long c-FLIP isoforms. Despite apparent progress in understanding the assembly of CD...
Gespeichert in:
Veröffentlicht in: | Oncogene 2020-02, Vol.39 (8), p.1756-1772 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1772 |
---|---|
container_issue | 8 |
container_start_page | 1756 |
container_title | Oncogene |
container_volume | 39 |
creator | Hillert, Laura K. Ivanisenko, Nikita V. Espe, Johannes König, Corinna Ivanisenko, Vladimir A. Kähne, Thilo Lavrik, Inna N. |
description | The assembly of the death-inducing signaling complex (DISC) and death effector domain (DED) filaments at CD95/Fas initiates extrinsic apoptosis. Procaspase-8 activation at the DED filaments is controlled by short and long c-FLIP isoforms. Despite apparent progress in understanding the assembly of CD95-activated platforms and DED filaments, the detailed molecular mechanism of c-FLIP action remains elusive. Here, we further addressed the mechanisms of c-FLIP action at the DISC using biochemical assays, quantitative mass spectrometry, and structural modeling. Our data strongly indicate that c-FLIP can bind to both FADD and procaspase-8 at the DED filament. Moreover, the constructed in silico model shows that c-FLIP proteins can lead to the formation of the DISCs comprising short DED filaments as well as serve as bridging motifs for building a cooperative DISC network, in which adjacent CD95 DISCs are connected by DED filaments. This network is based on selective interactions of FADD with both c-FLIP and procaspase-8. Hence, c-FLIP proteins at the DISC control initiation, elongation, and composition of DED filaments, playing the role of control checkpoints. These findings provide new insights into DISC and DED filament regulation and open innovative possibilities for targeting the extrinsic apoptosis pathway. |
doi_str_mv | 10.1038/s41388-019-1100-3 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2315969085</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A618257364</galeid><sourcerecordid>A618257364</sourcerecordid><originalsourceid>FETCH-LOGICAL-c533t-242d375a54c727bb79776d74f188fbc67772f60aa6ad55255171e6b7c42e47cf3</originalsourceid><addsrcrecordid>eNp9kTtvFDEUhS0EIpvAD6BBlmhoHPy-4zLKg0RaCQpSWx6PvZkwYy_2bJF_j5cNRCBALm7h79zHOQi9YfSUUdF9qJKJriOUGcIYpUQ8QysmQROljHyOVtQoSgwX_Agd13pPKQVD-Ut0JBhICmBW6Had0wa7NOB6l8uCx5pjLnPFOWJPrtY3n7HzC3YV-5yWkifs74L_us1jWn5AF5cXOI6Tm0PaYzXM_fTwCr2Ibqrh9WM9QbdXl1_Or8n608eb87M18UqIhXDJBwHKKemBQ9-DAdADyMi6LvZeAwCPmjqn3aAUV4oBC7oHL3mQ4KM4Qe8Pfbclf9uFuth5rD5Mk0sh76rlgimjDe1UQ9_9gd7nXUltO8ubZSAMdPq_lFBGaGMEf6I2bgp2TDEvxfn9aHumWccVCC0bdfoXqr0hzGNzMzTbwu8CdhD4kmstIdptGWdXHiyjdh-4PQRuW-B2H7gVTfP2ceFdP4fhl-Jnwg3gB6C2r7QJ5emif3f9DnuqsNA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2359369932</pqid></control><display><type>article</type><title>Long and short isoforms of c-FLIP act as control checkpoints of DED filament assembly</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Hillert, Laura K. ; Ivanisenko, Nikita V. ; Espe, Johannes ; König, Corinna ; Ivanisenko, Vladimir A. ; Kähne, Thilo ; Lavrik, Inna N.</creator><creatorcontrib>Hillert, Laura K. ; Ivanisenko, Nikita V. ; Espe, Johannes ; König, Corinna ; Ivanisenko, Vladimir A. ; Kähne, Thilo ; Lavrik, Inna N.</creatorcontrib><description>The assembly of the death-inducing signaling complex (DISC) and death effector domain (DED) filaments at CD95/Fas initiates extrinsic apoptosis. Procaspase-8 activation at the DED filaments is controlled by short and long c-FLIP isoforms. Despite apparent progress in understanding the assembly of CD95-activated platforms and DED filaments, the detailed molecular mechanism of c-FLIP action remains elusive. Here, we further addressed the mechanisms of c-FLIP action at the DISC using biochemical assays, quantitative mass spectrometry, and structural modeling. Our data strongly indicate that c-FLIP can bind to both FADD and procaspase-8 at the DED filament. Moreover, the constructed in silico model shows that c-FLIP proteins can lead to the formation of the DISCs comprising short DED filaments as well as serve as bridging motifs for building a cooperative DISC network, in which adjacent CD95 DISCs are connected by DED filaments. This network is based on selective interactions of FADD with both c-FLIP and procaspase-8. Hence, c-FLIP proteins at the DISC control initiation, elongation, and composition of DED filaments, playing the role of control checkpoints. These findings provide new insights into DISC and DED filament regulation and open innovative possibilities for targeting the extrinsic apoptosis pathway.</description><identifier>ISSN: 0950-9232</identifier><identifier>EISSN: 1476-5594</identifier><identifier>DOI: 10.1038/s41388-019-1100-3</identifier><identifier>PMID: 31740779</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>101/58 ; 631/45/475 ; 631/80/82/23 ; 96 ; 96/1 ; 96/2 ; 96/31 ; 96/95 ; Amino Acid Sequence ; Apoptosis ; c-FLIP protein ; CASP8 and FADD-Like Apoptosis Regulating Protein - chemistry ; CASP8 and FADD-Like Apoptosis Regulating Protein - metabolism ; CD95 antigen ; Cell Biology ; Cellular proteins ; Death Domain Receptor Signaling Adaptor Proteins - metabolism ; Death Effector Domain ; FADD protein ; fas Receptor - metabolism ; Filaments ; FLIP protein ; Gene expression ; Genetic aspects ; Health aspects ; HeLa Cells ; Human Genetics ; Humans ; Internal Medicine ; Isoforms ; Jurkat Cells ; Mass spectroscopy ; Medicine ; Medicine & Public Health ; Models, Molecular ; Oncology ; Protein Isoforms - metabolism ; Protein Transport</subject><ispartof>Oncogene, 2020-02, Vol.39 (8), p.1756-1772</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2019</rights><rights>COPYRIGHT 2020 Nature Publishing Group</rights><rights>2019© The Author(s), under exclusive licence to Springer Nature Limited 2019</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c533t-242d375a54c727bb79776d74f188fbc67772f60aa6ad55255171e6b7c42e47cf3</citedby><cites>FETCH-LOGICAL-c533t-242d375a54c727bb79776d74f188fbc67772f60aa6ad55255171e6b7c42e47cf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41388-019-1100-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41388-019-1100-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31740779$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hillert, Laura K.</creatorcontrib><creatorcontrib>Ivanisenko, Nikita V.</creatorcontrib><creatorcontrib>Espe, Johannes</creatorcontrib><creatorcontrib>König, Corinna</creatorcontrib><creatorcontrib>Ivanisenko, Vladimir A.</creatorcontrib><creatorcontrib>Kähne, Thilo</creatorcontrib><creatorcontrib>Lavrik, Inna N.</creatorcontrib><title>Long and short isoforms of c-FLIP act as control checkpoints of DED filament assembly</title><title>Oncogene</title><addtitle>Oncogene</addtitle><addtitle>Oncogene</addtitle><description>The assembly of the death-inducing signaling complex (DISC) and death effector domain (DED) filaments at CD95/Fas initiates extrinsic apoptosis. Procaspase-8 activation at the DED filaments is controlled by short and long c-FLIP isoforms. Despite apparent progress in understanding the assembly of CD95-activated platforms and DED filaments, the detailed molecular mechanism of c-FLIP action remains elusive. Here, we further addressed the mechanisms of c-FLIP action at the DISC using biochemical assays, quantitative mass spectrometry, and structural modeling. Our data strongly indicate that c-FLIP can bind to both FADD and procaspase-8 at the DED filament. Moreover, the constructed in silico model shows that c-FLIP proteins can lead to the formation of the DISCs comprising short DED filaments as well as serve as bridging motifs for building a cooperative DISC network, in which adjacent CD95 DISCs are connected by DED filaments. This network is based on selective interactions of FADD with both c-FLIP and procaspase-8. Hence, c-FLIP proteins at the DISC control initiation, elongation, and composition of DED filaments, playing the role of control checkpoints. These findings provide new insights into DISC and DED filament regulation and open innovative possibilities for targeting the extrinsic apoptosis pathway.</description><subject>101/58</subject><subject>631/45/475</subject><subject>631/80/82/23</subject><subject>96</subject><subject>96/1</subject><subject>96/2</subject><subject>96/31</subject><subject>96/95</subject><subject>Amino Acid Sequence</subject><subject>Apoptosis</subject><subject>c-FLIP protein</subject><subject>CASP8 and FADD-Like Apoptosis Regulating Protein - chemistry</subject><subject>CASP8 and FADD-Like Apoptosis Regulating Protein - metabolism</subject><subject>CD95 antigen</subject><subject>Cell Biology</subject><subject>Cellular proteins</subject><subject>Death Domain Receptor Signaling Adaptor Proteins - metabolism</subject><subject>Death Effector Domain</subject><subject>FADD protein</subject><subject>fas Receptor - metabolism</subject><subject>Filaments</subject><subject>FLIP protein</subject><subject>Gene expression</subject><subject>Genetic aspects</subject><subject>Health aspects</subject><subject>HeLa Cells</subject><subject>Human Genetics</subject><subject>Humans</subject><subject>Internal Medicine</subject><subject>Isoforms</subject><subject>Jurkat Cells</subject><subject>Mass spectroscopy</subject><subject>Medicine</subject><subject>Medicine & Public Health</subject><subject>Models, Molecular</subject><subject>Oncology</subject><subject>Protein Isoforms - metabolism</subject><subject>Protein Transport</subject><issn>0950-9232</issn><issn>1476-5594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kTtvFDEUhS0EIpvAD6BBlmhoHPy-4zLKg0RaCQpSWx6PvZkwYy_2bJF_j5cNRCBALm7h79zHOQi9YfSUUdF9qJKJriOUGcIYpUQ8QysmQROljHyOVtQoSgwX_Agd13pPKQVD-Ut0JBhICmBW6Had0wa7NOB6l8uCx5pjLnPFOWJPrtY3n7HzC3YV-5yWkifs74L_us1jWn5AF5cXOI6Tm0PaYzXM_fTwCr2Ibqrh9WM9QbdXl1_Or8n608eb87M18UqIhXDJBwHKKemBQ9-DAdADyMi6LvZeAwCPmjqn3aAUV4oBC7oHL3mQ4KM4Qe8Pfbclf9uFuth5rD5Mk0sh76rlgimjDe1UQ9_9gd7nXUltO8ubZSAMdPq_lFBGaGMEf6I2bgp2TDEvxfn9aHumWccVCC0bdfoXqr0hzGNzMzTbwu8CdhD4kmstIdptGWdXHiyjdh-4PQRuW-B2H7gVTfP2ceFdP4fhl-Jnwg3gB6C2r7QJ5emif3f9DnuqsNA</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Hillert, Laura K.</creator><creator>Ivanisenko, Nikita V.</creator><creator>Espe, Johannes</creator><creator>König, Corinna</creator><creator>Ivanisenko, Vladimir A.</creator><creator>Kähne, Thilo</creator><creator>Lavrik, Inna N.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20200201</creationdate><title>Long and short isoforms of c-FLIP act as control checkpoints of DED filament assembly</title><author>Hillert, Laura K. ; Ivanisenko, Nikita V. ; Espe, Johannes ; König, Corinna ; Ivanisenko, Vladimir A. ; Kähne, Thilo ; Lavrik, Inna N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c533t-242d375a54c727bb79776d74f188fbc67772f60aa6ad55255171e6b7c42e47cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>101/58</topic><topic>631/45/475</topic><topic>631/80/82/23</topic><topic>96</topic><topic>96/1</topic><topic>96/2</topic><topic>96/31</topic><topic>96/95</topic><topic>Amino Acid Sequence</topic><topic>Apoptosis</topic><topic>c-FLIP protein</topic><topic>CASP8 and FADD-Like Apoptosis Regulating Protein - chemistry</topic><topic>CASP8 and FADD-Like Apoptosis Regulating Protein - metabolism</topic><topic>CD95 antigen</topic><topic>Cell Biology</topic><topic>Cellular proteins</topic><topic>Death Domain Receptor Signaling Adaptor Proteins - metabolism</topic><topic>Death Effector Domain</topic><topic>FADD protein</topic><topic>fas Receptor - metabolism</topic><topic>Filaments</topic><topic>FLIP protein</topic><topic>Gene expression</topic><topic>Genetic aspects</topic><topic>Health aspects</topic><topic>HeLa Cells</topic><topic>Human Genetics</topic><topic>Humans</topic><topic>Internal Medicine</topic><topic>Isoforms</topic><topic>Jurkat Cells</topic><topic>Mass spectroscopy</topic><topic>Medicine</topic><topic>Medicine & Public Health</topic><topic>Models, Molecular</topic><topic>Oncology</topic><topic>Protein Isoforms - metabolism</topic><topic>Protein Transport</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hillert, Laura K.</creatorcontrib><creatorcontrib>Ivanisenko, Nikita V.</creatorcontrib><creatorcontrib>Espe, Johannes</creatorcontrib><creatorcontrib>König, Corinna</creatorcontrib><creatorcontrib>Ivanisenko, Vladimir A.</creatorcontrib><creatorcontrib>Kähne, Thilo</creatorcontrib><creatorcontrib>Lavrik, Inna N.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Oncogene</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hillert, Laura K.</au><au>Ivanisenko, Nikita V.</au><au>Espe, Johannes</au><au>König, Corinna</au><au>Ivanisenko, Vladimir A.</au><au>Kähne, Thilo</au><au>Lavrik, Inna N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Long and short isoforms of c-FLIP act as control checkpoints of DED filament assembly</atitle><jtitle>Oncogene</jtitle><stitle>Oncogene</stitle><addtitle>Oncogene</addtitle><date>2020-02-01</date><risdate>2020</risdate><volume>39</volume><issue>8</issue><spage>1756</spage><epage>1772</epage><pages>1756-1772</pages><issn>0950-9232</issn><eissn>1476-5594</eissn><abstract>The assembly of the death-inducing signaling complex (DISC) and death effector domain (DED) filaments at CD95/Fas initiates extrinsic apoptosis. Procaspase-8 activation at the DED filaments is controlled by short and long c-FLIP isoforms. Despite apparent progress in understanding the assembly of CD95-activated platforms and DED filaments, the detailed molecular mechanism of c-FLIP action remains elusive. Here, we further addressed the mechanisms of c-FLIP action at the DISC using biochemical assays, quantitative mass spectrometry, and structural modeling. Our data strongly indicate that c-FLIP can bind to both FADD and procaspase-8 at the DED filament. Moreover, the constructed in silico model shows that c-FLIP proteins can lead to the formation of the DISCs comprising short DED filaments as well as serve as bridging motifs for building a cooperative DISC network, in which adjacent CD95 DISCs are connected by DED filaments. This network is based on selective interactions of FADD with both c-FLIP and procaspase-8. Hence, c-FLIP proteins at the DISC control initiation, elongation, and composition of DED filaments, playing the role of control checkpoints. These findings provide new insights into DISC and DED filament regulation and open innovative possibilities for targeting the extrinsic apoptosis pathway.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31740779</pmid><doi>10.1038/s41388-019-1100-3</doi><tpages>17</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0950-9232 |
ispartof | Oncogene, 2020-02, Vol.39 (8), p.1756-1772 |
issn | 0950-9232 1476-5594 |
language | eng |
recordid | cdi_proquest_miscellaneous_2315969085 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | 101/58 631/45/475 631/80/82/23 96 96/1 96/2 96/31 96/95 Amino Acid Sequence Apoptosis c-FLIP protein CASP8 and FADD-Like Apoptosis Regulating Protein - chemistry CASP8 and FADD-Like Apoptosis Regulating Protein - metabolism CD95 antigen Cell Biology Cellular proteins Death Domain Receptor Signaling Adaptor Proteins - metabolism Death Effector Domain FADD protein fas Receptor - metabolism Filaments FLIP protein Gene expression Genetic aspects Health aspects HeLa Cells Human Genetics Humans Internal Medicine Isoforms Jurkat Cells Mass spectroscopy Medicine Medicine & Public Health Models, Molecular Oncology Protein Isoforms - metabolism Protein Transport |
title | Long and short isoforms of c-FLIP act as control checkpoints of DED filament assembly |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T21%3A32%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Long%20and%20short%20isoforms%20of%20c-FLIP%20act%20as%20control%20checkpoints%20of%20DED%20filament%20assembly&rft.jtitle=Oncogene&rft.au=Hillert,%20Laura%20K.&rft.date=2020-02-01&rft.volume=39&rft.issue=8&rft.spage=1756&rft.epage=1772&rft.pages=1756-1772&rft.issn=0950-9232&rft.eissn=1476-5594&rft_id=info:doi/10.1038/s41388-019-1100-3&rft_dat=%3Cgale_proqu%3EA618257364%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2359369932&rft_id=info:pmid/31740779&rft_galeid=A618257364&rfr_iscdi=true |