Radiomics performs comparable to morphologic assessment by expert radiologists for prediction of response to neoadjuvant chemoradiotherapy on baseline staging MRI in rectal cancer

Purpose To compare the performance of advanced radiomics analysis to morphological assessment by expert radiologists to predict a good or complete response to chemoradiotherapy in rectal cancer using baseline staging MRI. Materials and methods We retrospectively assessed the primary staging MRIs [pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Abdominal imaging 2020-03, Vol.45 (3), p.632-643
Hauptverfasser: van Griethuysen, Joost J. M., Lambregts, Doenja M. J., Trebeschi, Stefano, Lahaye, Max J., Bakers, Frans C. H., Vliegen, Roy F. A., Beets, Geerard L., Aerts, Hugo J. W. L., Beets-Tan, Regina G. H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 643
container_issue 3
container_start_page 632
container_title Abdominal imaging
container_volume 45
creator van Griethuysen, Joost J. M.
Lambregts, Doenja M. J.
Trebeschi, Stefano
Lahaye, Max J.
Bakers, Frans C. H.
Vliegen, Roy F. A.
Beets, Geerard L.
Aerts, Hugo J. W. L.
Beets-Tan, Regina G. H.
description Purpose To compare the performance of advanced radiomics analysis to morphological assessment by expert radiologists to predict a good or complete response to chemoradiotherapy in rectal cancer using baseline staging MRI. Materials and methods We retrospectively assessed the primary staging MRIs [prior to chemoradiotherapy (CRT)] of 133 rectal cancer patients from 2 centers. First, two expert radiologists subjectively estimated the likelihood of achieving a “complete response” (ypT0) and “good response” (TRG 1–2), using a 5-point score (based on TN-stage, MRF/EMVI-status, size/signal/shape). Next, tumor volumes were segmented on high b value DWI (semi-automated, corrected by 2 non-expert and 2-expert readers, resulting in 5 segmentations), copied to the remaining sequences after which a total of 2505 radiomic features were extracted from T2W, low and high b value DWI and ADC. Stability of features for noise due to inter-reader and inter-scanner and protocol variations was assessed using intraclass correlation (ICC) and the Kruskal–Wallis test. Using data from center 1 ( n  = 86; training set), top 9 features were selected using minimum Redundancy Maximum Relevance and combined in a logistic regression model. Finally, diagnostic performance of the fitted models was assessed on data from center 2 ( n  = 47; validation set) and compared to the performance of the radiologists. Results The Radiomic models resulted in AUCs of 0.69–0.79 (with similar results for the segmentations performed by expert/non-expert readers) to predict response, results similar to the morphologic prediction by the expert radiologists (AUC 0.67–0.83). Radiomics using semi-automatically generated segmentations (without manual input) did not result in significant predictive performance. Conclusions Radiomics could predict response to therapy with comparable diagnostic performance as expert radiologists, regardless of whether image segmentation was performed by non-expert or expert readers, indicating that expert input is not required in order for the radiomics workflow to produce significant predictive performance.
doi_str_mv 10.1007/s00261-019-02321-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2315531292</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2315531292</sourcerecordid><originalsourceid>FETCH-LOGICAL-c485t-170d54e450783e22612d474c5062a67f97f9c9239346835866229fb7458afd8a3</originalsourceid><addsrcrecordid>eNp9kd1qFDEYhoMotqy9AQ8k4IknU_MzSWYOpagtVISi4NmQyXyzm2UmGfNlxL0ub9Bst1bwQAgkkOd98vMS8pKzS86YeYuMCc0rxtuKCSl41Twh50JqXTGmmqeP6_rbGblA3DPGuFacC_WcnEluZG1Ye05-3dnBx9k7pAukMaYZqYvzYpPtJ6A50jmmZRenuPWOWkRAnCFk2h8o_CyRTNPRcNzHjLQY6JJg8C77GGgcaQJcYsB7V4Boh_36wxaB20FRH7N5B8kuB1r43iJMPgDFbLc-bOmnuxvqQ5G4bCfqbHCQXpBno50QLh7mDfn64f2Xq-vq9vPHm6t3t5WrG5UrbtigaqgVM40EUX5LDLWpnWJaWG3GtgzXCtnKWjdSNVoL0Y69qVVjx6GxckPenLxLit9XwNzNHh1Mky3vWLETkisluSiODXn9D7qPawrldoXS0ghmmCmUOFEuRcQEY7ckP9t06Djrjq12p1a70mp332rXlNCrB_XazzA8Rv50WAB5ArBshS2kv2f_R_sbEeKvyw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2363720707</pqid></control><display><type>article</type><title>Radiomics performs comparable to morphologic assessment by expert radiologists for prediction of response to neoadjuvant chemoradiotherapy on baseline staging MRI in rectal cancer</title><source>MEDLINE</source><source>SpringerLink</source><creator>van Griethuysen, Joost J. M. ; Lambregts, Doenja M. J. ; Trebeschi, Stefano ; Lahaye, Max J. ; Bakers, Frans C. H. ; Vliegen, Roy F. A. ; Beets, Geerard L. ; Aerts, Hugo J. W. L. ; Beets-Tan, Regina G. H.</creator><creatorcontrib>van Griethuysen, Joost J. M. ; Lambregts, Doenja M. J. ; Trebeschi, Stefano ; Lahaye, Max J. ; Bakers, Frans C. H. ; Vliegen, Roy F. A. ; Beets, Geerard L. ; Aerts, Hugo J. W. L. ; Beets-Tan, Regina G. H.</creatorcontrib><description>Purpose To compare the performance of advanced radiomics analysis to morphological assessment by expert radiologists to predict a good or complete response to chemoradiotherapy in rectal cancer using baseline staging MRI. Materials and methods We retrospectively assessed the primary staging MRIs [prior to chemoradiotherapy (CRT)] of 133 rectal cancer patients from 2 centers. First, two expert radiologists subjectively estimated the likelihood of achieving a “complete response” (ypT0) and “good response” (TRG 1–2), using a 5-point score (based on TN-stage, MRF/EMVI-status, size/signal/shape). Next, tumor volumes were segmented on high b value DWI (semi-automated, corrected by 2 non-expert and 2-expert readers, resulting in 5 segmentations), copied to the remaining sequences after which a total of 2505 radiomic features were extracted from T2W, low and high b value DWI and ADC. Stability of features for noise due to inter-reader and inter-scanner and protocol variations was assessed using intraclass correlation (ICC) and the Kruskal–Wallis test. Using data from center 1 ( n  = 86; training set), top 9 features were selected using minimum Redundancy Maximum Relevance and combined in a logistic regression model. Finally, diagnostic performance of the fitted models was assessed on data from center 2 ( n  = 47; validation set) and compared to the performance of the radiologists. Results The Radiomic models resulted in AUCs of 0.69–0.79 (with similar results for the segmentations performed by expert/non-expert readers) to predict response, results similar to the morphologic prediction by the expert radiologists (AUC 0.67–0.83). Radiomics using semi-automatically generated segmentations (without manual input) did not result in significant predictive performance. Conclusions Radiomics could predict response to therapy with comparable diagnostic performance as expert radiologists, regardless of whether image segmentation was performed by non-expert or expert readers, indicating that expert input is not required in order for the radiomics workflow to produce significant predictive performance.</description><identifier>ISSN: 2366-004X</identifier><identifier>EISSN: 2366-0058</identifier><identifier>DOI: 10.1007/s00261-019-02321-8</identifier><identifier>PMID: 31734709</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Aged ; Aged, 80 and over ; Algorithms ; Cancer ; Chemoradiotherapy ; Chemotherapy ; Colorectal cancer ; Diagnostic systems ; Diffusion Magnetic Resonance Imaging - methods ; Feature extraction ; Female ; Gastroenterology ; Hepatology ; Humans ; Image Interpretation, Computer-Assisted ; Image processing ; Image segmentation ; Imaging ; Magnetic resonance imaging ; Male ; Medicine ; Medicine &amp; Public Health ; Middle Aged ; Neoadjuvant Therapy ; Neoplasm Staging ; Pelvis ; Performance prediction ; Radiation therapy ; Radiology ; Radiomics ; Rectal Neoplasms - diagnostic imaging ; Rectal Neoplasms - pathology ; Rectal Neoplasms - therapy ; Rectum ; Redundancy ; Regression analysis ; Regression models ; Retrospective Studies ; Tumor Burden ; Workflow</subject><ispartof>Abdominal imaging, 2020-03, Vol.45 (3), p.632-643</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>Abdominal Radiology is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c485t-170d54e450783e22612d474c5062a67f97f9c9239346835866229fb7458afd8a3</citedby><cites>FETCH-LOGICAL-c485t-170d54e450783e22612d474c5062a67f97f9c9239346835866229fb7458afd8a3</cites><orcidid>0000-0003-2990-0099 ; 0000-0002-5714-289X ; 0000-0002-1671-9912 ; 0000-0002-2122-2003 ; 0000-0002-8444-202X ; 0000-0003-0447-0918</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00261-019-02321-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00261-019-02321-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31734709$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>van Griethuysen, Joost J. M.</creatorcontrib><creatorcontrib>Lambregts, Doenja M. J.</creatorcontrib><creatorcontrib>Trebeschi, Stefano</creatorcontrib><creatorcontrib>Lahaye, Max J.</creatorcontrib><creatorcontrib>Bakers, Frans C. H.</creatorcontrib><creatorcontrib>Vliegen, Roy F. A.</creatorcontrib><creatorcontrib>Beets, Geerard L.</creatorcontrib><creatorcontrib>Aerts, Hugo J. W. L.</creatorcontrib><creatorcontrib>Beets-Tan, Regina G. H.</creatorcontrib><title>Radiomics performs comparable to morphologic assessment by expert radiologists for prediction of response to neoadjuvant chemoradiotherapy on baseline staging MRI in rectal cancer</title><title>Abdominal imaging</title><addtitle>Abdom Radiol</addtitle><addtitle>Abdom Radiol (NY)</addtitle><description>Purpose To compare the performance of advanced radiomics analysis to morphological assessment by expert radiologists to predict a good or complete response to chemoradiotherapy in rectal cancer using baseline staging MRI. Materials and methods We retrospectively assessed the primary staging MRIs [prior to chemoradiotherapy (CRT)] of 133 rectal cancer patients from 2 centers. First, two expert radiologists subjectively estimated the likelihood of achieving a “complete response” (ypT0) and “good response” (TRG 1–2), using a 5-point score (based on TN-stage, MRF/EMVI-status, size/signal/shape). Next, tumor volumes were segmented on high b value DWI (semi-automated, corrected by 2 non-expert and 2-expert readers, resulting in 5 segmentations), copied to the remaining sequences after which a total of 2505 radiomic features were extracted from T2W, low and high b value DWI and ADC. Stability of features for noise due to inter-reader and inter-scanner and protocol variations was assessed using intraclass correlation (ICC) and the Kruskal–Wallis test. Using data from center 1 ( n  = 86; training set), top 9 features were selected using minimum Redundancy Maximum Relevance and combined in a logistic regression model. Finally, diagnostic performance of the fitted models was assessed on data from center 2 ( n  = 47; validation set) and compared to the performance of the radiologists. Results The Radiomic models resulted in AUCs of 0.69–0.79 (with similar results for the segmentations performed by expert/non-expert readers) to predict response, results similar to the morphologic prediction by the expert radiologists (AUC 0.67–0.83). Radiomics using semi-automatically generated segmentations (without manual input) did not result in significant predictive performance. Conclusions Radiomics could predict response to therapy with comparable diagnostic performance as expert radiologists, regardless of whether image segmentation was performed by non-expert or expert readers, indicating that expert input is not required in order for the radiomics workflow to produce significant predictive performance.</description><subject>Aged</subject><subject>Aged, 80 and over</subject><subject>Algorithms</subject><subject>Cancer</subject><subject>Chemoradiotherapy</subject><subject>Chemotherapy</subject><subject>Colorectal cancer</subject><subject>Diagnostic systems</subject><subject>Diffusion Magnetic Resonance Imaging - methods</subject><subject>Feature extraction</subject><subject>Female</subject><subject>Gastroenterology</subject><subject>Hepatology</subject><subject>Humans</subject><subject>Image Interpretation, Computer-Assisted</subject><subject>Image processing</subject><subject>Image segmentation</subject><subject>Imaging</subject><subject>Magnetic resonance imaging</subject><subject>Male</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Middle Aged</subject><subject>Neoadjuvant Therapy</subject><subject>Neoplasm Staging</subject><subject>Pelvis</subject><subject>Performance prediction</subject><subject>Radiation therapy</subject><subject>Radiology</subject><subject>Radiomics</subject><subject>Rectal Neoplasms - diagnostic imaging</subject><subject>Rectal Neoplasms - pathology</subject><subject>Rectal Neoplasms - therapy</subject><subject>Rectum</subject><subject>Redundancy</subject><subject>Regression analysis</subject><subject>Regression models</subject><subject>Retrospective Studies</subject><subject>Tumor Burden</subject><subject>Workflow</subject><issn>2366-004X</issn><issn>2366-0058</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kd1qFDEYhoMotqy9AQ8k4IknU_MzSWYOpagtVISi4NmQyXyzm2UmGfNlxL0ub9Bst1bwQAgkkOd98vMS8pKzS86YeYuMCc0rxtuKCSl41Twh50JqXTGmmqeP6_rbGblA3DPGuFacC_WcnEluZG1Ye05-3dnBx9k7pAukMaYZqYvzYpPtJ6A50jmmZRenuPWOWkRAnCFk2h8o_CyRTNPRcNzHjLQY6JJg8C77GGgcaQJcYsB7V4Boh_36wxaB20FRH7N5B8kuB1r43iJMPgDFbLc-bOmnuxvqQ5G4bCfqbHCQXpBno50QLh7mDfn64f2Xq-vq9vPHm6t3t5WrG5UrbtigaqgVM40EUX5LDLWpnWJaWG3GtgzXCtnKWjdSNVoL0Y69qVVjx6GxckPenLxLit9XwNzNHh1Mky3vWLETkisluSiODXn9D7qPawrldoXS0ghmmCmUOFEuRcQEY7ckP9t06Djrjq12p1a70mp332rXlNCrB_XazzA8Rv50WAB5ArBshS2kv2f_R_sbEeKvyw</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>van Griethuysen, Joost J. M.</creator><creator>Lambregts, Doenja M. J.</creator><creator>Trebeschi, Stefano</creator><creator>Lahaye, Max J.</creator><creator>Bakers, Frans C. H.</creator><creator>Vliegen, Roy F. A.</creator><creator>Beets, Geerard L.</creator><creator>Aerts, Hugo J. W. L.</creator><creator>Beets-Tan, Regina G. H.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7Z</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2990-0099</orcidid><orcidid>https://orcid.org/0000-0002-5714-289X</orcidid><orcidid>https://orcid.org/0000-0002-1671-9912</orcidid><orcidid>https://orcid.org/0000-0002-2122-2003</orcidid><orcidid>https://orcid.org/0000-0002-8444-202X</orcidid><orcidid>https://orcid.org/0000-0003-0447-0918</orcidid></search><sort><creationdate>20200301</creationdate><title>Radiomics performs comparable to morphologic assessment by expert radiologists for prediction of response to neoadjuvant chemoradiotherapy on baseline staging MRI in rectal cancer</title><author>van Griethuysen, Joost J. M. ; Lambregts, Doenja M. J. ; Trebeschi, Stefano ; Lahaye, Max J. ; Bakers, Frans C. H. ; Vliegen, Roy F. A. ; Beets, Geerard L. ; Aerts, Hugo J. W. L. ; Beets-Tan, Regina G. H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c485t-170d54e450783e22612d474c5062a67f97f9c9239346835866229fb7458afd8a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aged</topic><topic>Aged, 80 and over</topic><topic>Algorithms</topic><topic>Cancer</topic><topic>Chemoradiotherapy</topic><topic>Chemotherapy</topic><topic>Colorectal cancer</topic><topic>Diagnostic systems</topic><topic>Diffusion Magnetic Resonance Imaging - methods</topic><topic>Feature extraction</topic><topic>Female</topic><topic>Gastroenterology</topic><topic>Hepatology</topic><topic>Humans</topic><topic>Image Interpretation, Computer-Assisted</topic><topic>Image processing</topic><topic>Image segmentation</topic><topic>Imaging</topic><topic>Magnetic resonance imaging</topic><topic>Male</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Middle Aged</topic><topic>Neoadjuvant Therapy</topic><topic>Neoplasm Staging</topic><topic>Pelvis</topic><topic>Performance prediction</topic><topic>Radiation therapy</topic><topic>Radiology</topic><topic>Radiomics</topic><topic>Rectal Neoplasms - diagnostic imaging</topic><topic>Rectal Neoplasms - pathology</topic><topic>Rectal Neoplasms - therapy</topic><topic>Rectum</topic><topic>Redundancy</topic><topic>Regression analysis</topic><topic>Regression models</topic><topic>Retrospective Studies</topic><topic>Tumor Burden</topic><topic>Workflow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>van Griethuysen, Joost J. M.</creatorcontrib><creatorcontrib>Lambregts, Doenja M. J.</creatorcontrib><creatorcontrib>Trebeschi, Stefano</creatorcontrib><creatorcontrib>Lahaye, Max J.</creatorcontrib><creatorcontrib>Bakers, Frans C. H.</creatorcontrib><creatorcontrib>Vliegen, Roy F. A.</creatorcontrib><creatorcontrib>Beets, Geerard L.</creatorcontrib><creatorcontrib>Aerts, Hugo J. W. L.</creatorcontrib><creatorcontrib>Beets-Tan, Regina G. H.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Nursing &amp; Allied Health Database</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>Biochemistry Abstracts 1</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><jtitle>Abdominal imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>van Griethuysen, Joost J. M.</au><au>Lambregts, Doenja M. J.</au><au>Trebeschi, Stefano</au><au>Lahaye, Max J.</au><au>Bakers, Frans C. H.</au><au>Vliegen, Roy F. A.</au><au>Beets, Geerard L.</au><au>Aerts, Hugo J. W. L.</au><au>Beets-Tan, Regina G. H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Radiomics performs comparable to morphologic assessment by expert radiologists for prediction of response to neoadjuvant chemoradiotherapy on baseline staging MRI in rectal cancer</atitle><jtitle>Abdominal imaging</jtitle><stitle>Abdom Radiol</stitle><addtitle>Abdom Radiol (NY)</addtitle><date>2020-03-01</date><risdate>2020</risdate><volume>45</volume><issue>3</issue><spage>632</spage><epage>643</epage><pages>632-643</pages><issn>2366-004X</issn><eissn>2366-0058</eissn><abstract>Purpose To compare the performance of advanced radiomics analysis to morphological assessment by expert radiologists to predict a good or complete response to chemoradiotherapy in rectal cancer using baseline staging MRI. Materials and methods We retrospectively assessed the primary staging MRIs [prior to chemoradiotherapy (CRT)] of 133 rectal cancer patients from 2 centers. First, two expert radiologists subjectively estimated the likelihood of achieving a “complete response” (ypT0) and “good response” (TRG 1–2), using a 5-point score (based on TN-stage, MRF/EMVI-status, size/signal/shape). Next, tumor volumes were segmented on high b value DWI (semi-automated, corrected by 2 non-expert and 2-expert readers, resulting in 5 segmentations), copied to the remaining sequences after which a total of 2505 radiomic features were extracted from T2W, low and high b value DWI and ADC. Stability of features for noise due to inter-reader and inter-scanner and protocol variations was assessed using intraclass correlation (ICC) and the Kruskal–Wallis test. Using data from center 1 ( n  = 86; training set), top 9 features were selected using minimum Redundancy Maximum Relevance and combined in a logistic regression model. Finally, diagnostic performance of the fitted models was assessed on data from center 2 ( n  = 47; validation set) and compared to the performance of the radiologists. Results The Radiomic models resulted in AUCs of 0.69–0.79 (with similar results for the segmentations performed by expert/non-expert readers) to predict response, results similar to the morphologic prediction by the expert radiologists (AUC 0.67–0.83). Radiomics using semi-automatically generated segmentations (without manual input) did not result in significant predictive performance. Conclusions Radiomics could predict response to therapy with comparable diagnostic performance as expert radiologists, regardless of whether image segmentation was performed by non-expert or expert readers, indicating that expert input is not required in order for the radiomics workflow to produce significant predictive performance.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>31734709</pmid><doi>10.1007/s00261-019-02321-8</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-2990-0099</orcidid><orcidid>https://orcid.org/0000-0002-5714-289X</orcidid><orcidid>https://orcid.org/0000-0002-1671-9912</orcidid><orcidid>https://orcid.org/0000-0002-2122-2003</orcidid><orcidid>https://orcid.org/0000-0002-8444-202X</orcidid><orcidid>https://orcid.org/0000-0003-0447-0918</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2366-004X
ispartof Abdominal imaging, 2020-03, Vol.45 (3), p.632-643
issn 2366-004X
2366-0058
language eng
recordid cdi_proquest_miscellaneous_2315531292
source MEDLINE; SpringerLink
subjects Aged
Aged, 80 and over
Algorithms
Cancer
Chemoradiotherapy
Chemotherapy
Colorectal cancer
Diagnostic systems
Diffusion Magnetic Resonance Imaging - methods
Feature extraction
Female
Gastroenterology
Hepatology
Humans
Image Interpretation, Computer-Assisted
Image processing
Image segmentation
Imaging
Magnetic resonance imaging
Male
Medicine
Medicine & Public Health
Middle Aged
Neoadjuvant Therapy
Neoplasm Staging
Pelvis
Performance prediction
Radiation therapy
Radiology
Radiomics
Rectal Neoplasms - diagnostic imaging
Rectal Neoplasms - pathology
Rectal Neoplasms - therapy
Rectum
Redundancy
Regression analysis
Regression models
Retrospective Studies
Tumor Burden
Workflow
title Radiomics performs comparable to morphologic assessment by expert radiologists for prediction of response to neoadjuvant chemoradiotherapy on baseline staging MRI in rectal cancer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T19%3A35%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Radiomics%20performs%20comparable%20to%20morphologic%20assessment%20by%20expert%20radiologists%20for%20prediction%20of%20response%20to%20neoadjuvant%20chemoradiotherapy%20on%20baseline%20staging%20MRI%20in%20rectal%20cancer&rft.jtitle=Abdominal%20imaging&rft.au=van%20Griethuysen,%20Joost%20J.%20M.&rft.date=2020-03-01&rft.volume=45&rft.issue=3&rft.spage=632&rft.epage=643&rft.pages=632-643&rft.issn=2366-004X&rft.eissn=2366-0058&rft_id=info:doi/10.1007/s00261-019-02321-8&rft_dat=%3Cproquest_cross%3E2315531292%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2363720707&rft_id=info:pmid/31734709&rfr_iscdi=true