Time-Evolving, Spatially Explicit Forecasts of the Northern Gulf of Mexico Hypoxic Zone

The Mississippi–Atchafalaya River Basin delivers large amounts of freshwater and nutrients to the northern Gulf of Mexico promoting the development of a large hypoxic zone every summer. Statistical and semiempirical models have long been used to provide seasonal forecasts of the mid-summer hypoxic e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science & technology 2019-12, Vol.53 (24), p.14449-14458
Hauptverfasser: Laurent, Arnaud, Fennel, Katja
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14458
container_issue 24
container_start_page 14449
container_title Environmental science & technology
container_volume 53
creator Laurent, Arnaud
Fennel, Katja
description The Mississippi–Atchafalaya River Basin delivers large amounts of freshwater and nutrients to the northern Gulf of Mexico promoting the development of a large hypoxic zone every summer. Statistical and semiempirical models have long been used to provide seasonal forecasts of the mid-summer hypoxic extent using historic time series of spring nutrient load and mid-summer hypoxic extent. These forecasts consist of a scalar estimate of the hypoxic area with uncertainty but do not include spatial distributions or temporal evolution of hypoxic conditions. Three-dimensional (3D) circulation-biogeochemical models of the coastal ocean simulate the temporal evolution of hypoxia in a spatially explicit manner but have not yet been used for seasonal hypoxia forecasting. Here, we present a hybrid method for seasonal, spatially explicit, time-evolving forecasts of the hypoxic zone that combines statistical forecasting with information from a 3D biogeochemical model. The hybrid method uses spring nitrate load and a multiyear (1985–2018) 3D hindcast simulation to produce a seasonal forecast. Validation shows that the method explains up to 76% of the observed year-to-year variability in the hypoxic area. The forecasts suggest that the maximum seasonal extent of hypoxia is reached, on average, on August 13, 2 weeks after the completion of the annual cruise. An analysis of month-to-month variations in hypoxia forecasts due to variability in wind speed and freshwater discharge allows estimates of weather-related uncertainties in the forecast.
doi_str_mv 10.1021/acs.est.9b05790
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2315528507</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2315528507</sourcerecordid><originalsourceid>FETCH-LOGICAL-a361t-dab3933be71f66e8476469907efec6de1da6a0b2f99f85d082a7f1f9adc31d503</originalsourceid><addsrcrecordid>eNp1kM9LwzAYhoMoOqdnbxLwImjnl2Zpk6OM6QR_HFQULyVtE61kTU1a2f57UzZ3EDx94eN53y88CB0RGBGIyYUs_Ej5diRyYKmALTQgLIaIcUa20QCA0EjQ5HUP7Xv_CQAxBb6L9ihJKYexGKCXp2quoum3Nd9V_X6OHxvZVtKYJZ4uGlMVVYuvrFOF9K3HVuP2Q-F768JwNb7ujO6Xd2pRFRbPlo0ND_xma3WAdrQ0Xh2u5xA9X02fJrPo9uH6ZnJ5G0makDYqZU4FpblKiU4SxcdpMk6EgFRpVSSlIqVMJOSxFkJzVgKPZaqJFrIsKCkZ0CE6XfU2zn51QUU2r3yhjJG1sp3PYkoYizmDNKAnf9BP27k6_C5QFIIzzvvCixVVOOu9UzprXDWXbpkRyHrnWXCe9em185A4Xvd2-VyVG_5XcgDOVkCf3Nz8r-4H_ISMOw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2330585880</pqid></control><display><type>article</type><title>Time-Evolving, Spatially Explicit Forecasts of the Northern Gulf of Mexico Hypoxic Zone</title><source>ACS Publications</source><source>MEDLINE</source><creator>Laurent, Arnaud ; Fennel, Katja</creator><creatorcontrib>Laurent, Arnaud ; Fennel, Katja</creatorcontrib><description>The Mississippi–Atchafalaya River Basin delivers large amounts of freshwater and nutrients to the northern Gulf of Mexico promoting the development of a large hypoxic zone every summer. Statistical and semiempirical models have long been used to provide seasonal forecasts of the mid-summer hypoxic extent using historic time series of spring nutrient load and mid-summer hypoxic extent. These forecasts consist of a scalar estimate of the hypoxic area with uncertainty but do not include spatial distributions or temporal evolution of hypoxic conditions. Three-dimensional (3D) circulation-biogeochemical models of the coastal ocean simulate the temporal evolution of hypoxia in a spatially explicit manner but have not yet been used for seasonal hypoxia forecasting. Here, we present a hybrid method for seasonal, spatially explicit, time-evolving forecasts of the hypoxic zone that combines statistical forecasting with information from a 3D biogeochemical model. The hybrid method uses spring nitrate load and a multiyear (1985–2018) 3D hindcast simulation to produce a seasonal forecast. Validation shows that the method explains up to 76% of the observed year-to-year variability in the hypoxic area. The forecasts suggest that the maximum seasonal extent of hypoxia is reached, on average, on August 13, 2 weeks after the completion of the annual cruise. An analysis of month-to-month variations in hypoxia forecasts due to variability in wind speed and freshwater discharge allows estimates of weather-related uncertainties in the forecast.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/acs.est.9b05790</identifier><identifier>PMID: 31738049</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Biogeochemistry ; Computer simulation ; Evolution ; Gulf of Mexico ; Humans ; Hypoxia ; Mathematical models ; Mississippi ; Nutrient loading ; Nutrients ; Ocean models ; Oxygen ; River basins ; Rivers ; Spatial distribution ; Spring (season) ; Statistical analysis ; Summer ; Three dimensional models ; Uncertainty ; Weather forecasting ; Wind speed</subject><ispartof>Environmental science &amp; technology, 2019-12, Vol.53 (24), p.14449-14458</ispartof><rights>Copyright American Chemical Society Dec 17, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a361t-dab3933be71f66e8476469907efec6de1da6a0b2f99f85d082a7f1f9adc31d503</citedby><cites>FETCH-LOGICAL-a361t-dab3933be71f66e8476469907efec6de1da6a0b2f99f85d082a7f1f9adc31d503</cites><orcidid>0000-0002-8545-9309</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.est.9b05790$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.est.9b05790$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31738049$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Laurent, Arnaud</creatorcontrib><creatorcontrib>Fennel, Katja</creatorcontrib><title>Time-Evolving, Spatially Explicit Forecasts of the Northern Gulf of Mexico Hypoxic Zone</title><title>Environmental science &amp; technology</title><addtitle>Environ. Sci. Technol</addtitle><description>The Mississippi–Atchafalaya River Basin delivers large amounts of freshwater and nutrients to the northern Gulf of Mexico promoting the development of a large hypoxic zone every summer. Statistical and semiempirical models have long been used to provide seasonal forecasts of the mid-summer hypoxic extent using historic time series of spring nutrient load and mid-summer hypoxic extent. These forecasts consist of a scalar estimate of the hypoxic area with uncertainty but do not include spatial distributions or temporal evolution of hypoxic conditions. Three-dimensional (3D) circulation-biogeochemical models of the coastal ocean simulate the temporal evolution of hypoxia in a spatially explicit manner but have not yet been used for seasonal hypoxia forecasting. Here, we present a hybrid method for seasonal, spatially explicit, time-evolving forecasts of the hypoxic zone that combines statistical forecasting with information from a 3D biogeochemical model. The hybrid method uses spring nitrate load and a multiyear (1985–2018) 3D hindcast simulation to produce a seasonal forecast. Validation shows that the method explains up to 76% of the observed year-to-year variability in the hypoxic area. The forecasts suggest that the maximum seasonal extent of hypoxia is reached, on average, on August 13, 2 weeks after the completion of the annual cruise. An analysis of month-to-month variations in hypoxia forecasts due to variability in wind speed and freshwater discharge allows estimates of weather-related uncertainties in the forecast.</description><subject>Biogeochemistry</subject><subject>Computer simulation</subject><subject>Evolution</subject><subject>Gulf of Mexico</subject><subject>Humans</subject><subject>Hypoxia</subject><subject>Mathematical models</subject><subject>Mississippi</subject><subject>Nutrient loading</subject><subject>Nutrients</subject><subject>Ocean models</subject><subject>Oxygen</subject><subject>River basins</subject><subject>Rivers</subject><subject>Spatial distribution</subject><subject>Spring (season)</subject><subject>Statistical analysis</subject><subject>Summer</subject><subject>Three dimensional models</subject><subject>Uncertainty</subject><subject>Weather forecasting</subject><subject>Wind speed</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kM9LwzAYhoMoOqdnbxLwImjnl2Zpk6OM6QR_HFQULyVtE61kTU1a2f57UzZ3EDx94eN53y88CB0RGBGIyYUs_Ej5diRyYKmALTQgLIaIcUa20QCA0EjQ5HUP7Xv_CQAxBb6L9ihJKYexGKCXp2quoum3Nd9V_X6OHxvZVtKYJZ4uGlMVVYuvrFOF9K3HVuP2Q-F768JwNb7ujO6Xd2pRFRbPlo0ND_xma3WAdrQ0Xh2u5xA9X02fJrPo9uH6ZnJ5G0makDYqZU4FpblKiU4SxcdpMk6EgFRpVSSlIqVMJOSxFkJzVgKPZaqJFrIsKCkZ0CE6XfU2zn51QUU2r3yhjJG1sp3PYkoYizmDNKAnf9BP27k6_C5QFIIzzvvCixVVOOu9UzprXDWXbpkRyHrnWXCe9em185A4Xvd2-VyVG_5XcgDOVkCf3Nz8r-4H_ISMOw</recordid><startdate>20191217</startdate><enddate>20191217</enddate><creator>Laurent, Arnaud</creator><creator>Fennel, Katja</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8545-9309</orcidid></search><sort><creationdate>20191217</creationdate><title>Time-Evolving, Spatially Explicit Forecasts of the Northern Gulf of Mexico Hypoxic Zone</title><author>Laurent, Arnaud ; Fennel, Katja</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a361t-dab3933be71f66e8476469907efec6de1da6a0b2f99f85d082a7f1f9adc31d503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Biogeochemistry</topic><topic>Computer simulation</topic><topic>Evolution</topic><topic>Gulf of Mexico</topic><topic>Humans</topic><topic>Hypoxia</topic><topic>Mathematical models</topic><topic>Mississippi</topic><topic>Nutrient loading</topic><topic>Nutrients</topic><topic>Ocean models</topic><topic>Oxygen</topic><topic>River basins</topic><topic>Rivers</topic><topic>Spatial distribution</topic><topic>Spring (season)</topic><topic>Statistical analysis</topic><topic>Summer</topic><topic>Three dimensional models</topic><topic>Uncertainty</topic><topic>Weather forecasting</topic><topic>Wind speed</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Laurent, Arnaud</creatorcontrib><creatorcontrib>Fennel, Katja</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Environmental science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Laurent, Arnaud</au><au>Fennel, Katja</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Time-Evolving, Spatially Explicit Forecasts of the Northern Gulf of Mexico Hypoxic Zone</atitle><jtitle>Environmental science &amp; technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2019-12-17</date><risdate>2019</risdate><volume>53</volume><issue>24</issue><spage>14449</spage><epage>14458</epage><pages>14449-14458</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><abstract>The Mississippi–Atchafalaya River Basin delivers large amounts of freshwater and nutrients to the northern Gulf of Mexico promoting the development of a large hypoxic zone every summer. Statistical and semiempirical models have long been used to provide seasonal forecasts of the mid-summer hypoxic extent using historic time series of spring nutrient load and mid-summer hypoxic extent. These forecasts consist of a scalar estimate of the hypoxic area with uncertainty but do not include spatial distributions or temporal evolution of hypoxic conditions. Three-dimensional (3D) circulation-biogeochemical models of the coastal ocean simulate the temporal evolution of hypoxia in a spatially explicit manner but have not yet been used for seasonal hypoxia forecasting. Here, we present a hybrid method for seasonal, spatially explicit, time-evolving forecasts of the hypoxic zone that combines statistical forecasting with information from a 3D biogeochemical model. The hybrid method uses spring nitrate load and a multiyear (1985–2018) 3D hindcast simulation to produce a seasonal forecast. Validation shows that the method explains up to 76% of the observed year-to-year variability in the hypoxic area. The forecasts suggest that the maximum seasonal extent of hypoxia is reached, on average, on August 13, 2 weeks after the completion of the annual cruise. An analysis of month-to-month variations in hypoxia forecasts due to variability in wind speed and freshwater discharge allows estimates of weather-related uncertainties in the forecast.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>31738049</pmid><doi>10.1021/acs.est.9b05790</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-8545-9309</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0013-936X
ispartof Environmental science & technology, 2019-12, Vol.53 (24), p.14449-14458
issn 0013-936X
1520-5851
language eng
recordid cdi_proquest_miscellaneous_2315528507
source ACS Publications; MEDLINE
subjects Biogeochemistry
Computer simulation
Evolution
Gulf of Mexico
Humans
Hypoxia
Mathematical models
Mississippi
Nutrient loading
Nutrients
Ocean models
Oxygen
River basins
Rivers
Spatial distribution
Spring (season)
Statistical analysis
Summer
Three dimensional models
Uncertainty
Weather forecasting
Wind speed
title Time-Evolving, Spatially Explicit Forecasts of the Northern Gulf of Mexico Hypoxic Zone
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T21%3A42%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Time-Evolving,%20Spatially%20Explicit%20Forecasts%20of%20the%20Northern%20Gulf%20of%20Mexico%20Hypoxic%20Zone&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Laurent,%20Arnaud&rft.date=2019-12-17&rft.volume=53&rft.issue=24&rft.spage=14449&rft.epage=14458&rft.pages=14449-14458&rft.issn=0013-936X&rft.eissn=1520-5851&rft_id=info:doi/10.1021/acs.est.9b05790&rft_dat=%3Cproquest_cross%3E2315528507%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2330585880&rft_id=info:pmid/31738049&rfr_iscdi=true