Investigation of Binary Metal (Ni, Co) Selenite as Li‐Ion Battery Anode Materials and Their Conversion Reaction Mechanism with Li Ions

Highly efficient anode materials with novel compositions for Li‐ion batteries are actively being researched. Multicomponent metal selenite is a promising candidate, capable of improving their electrochemical performance through the formation of metal oxide and selenide heterostructure nanocrystals d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2019-12, Vol.15 (51), p.e1905289-n/a
Hauptverfasser: Park, Gi Dae, Yang, Sung Jin, Lee, Jong‐Heun, Kang, Yun Chan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 51
container_start_page e1905289
container_title Small (Weinheim an der Bergstrasse, Germany)
container_volume 15
creator Park, Gi Dae
Yang, Sung Jin
Lee, Jong‐Heun
Kang, Yun Chan
description Highly efficient anode materials with novel compositions for Li‐ion batteries are actively being researched. Multicomponent metal selenite is a promising candidate, capable of improving their electrochemical performance through the formation of metal oxide and selenide heterostructure nanocrystals during the first cycle. Here, the binary nickel–cobalt selenite derived from Ni–Co Prussian blue analogs (PBA) is chosen as the first target material: the Ni–Co PBA are selenized and partially oxidized in sequence, yielding (NiCo)SeO3 phase with a small amount of metal selenate. The conversion mechanism of (NiCo)SeO3 for Li‐ion storage is studied by cyclic voltammetry, in situ X‐ray diffraction, ex situ X‐ray photoelectron spectroscopy, in situ electrochemical impedance spectroscopy, and ex situ transmission electron microscopy. The reversible reaction mechanism of (NiCo)SeO3 with the Li ions is described by the reaction: NiO + CoO + xSeO2 + (1 ‐ x)Se + (4x + 6)Li+ + (4x + 6)e− ↔ Ni + Co + (2x + 2)Li2O + Li2Se. To enhance electrochemical properties, polydopamine‐derived carbon is uniformly coated on (NiCo)SeO3, resulting in excellent cycling and rate performances for Li‐ion storage. The discharge capacity of C‐coated (NiCo)SeO3 is 680 mAh g−1 for the 1500th cycle when cycled at a current density of 5 A g−1. In this study, the synthesis of binary nickel–cobalt selenite derived from Ni–Co Prussian blue analogues anode materials for Li‐ion batteries (LIBs) is introduced. Moreover, the conversion mechanism of (NiCo)SeO3 for Li‐ion storage is systematically studied by various in situ and ex situ analysis.
doi_str_mv 10.1002/smll.201905289
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2315525877</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2315525877</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4129-f0f8fea169f7db99e824e2b34a49291016ed068565bee090bd8db47a880b6e223</originalsourceid><addsrcrecordid>eNqFkTtPwzAYRS0EouWxMiJLLEWixXYSxx7bikelFCRa5shJvlBXiVPiFMTGyMhv5JfgUigSC5Nt6dzjz74IHVHSo4Swc1sWRY8RKknAhNxCbcqp1-WCye3NnpIW2rN2TohHmR_uopZHQ48zn7fR28g8gW30g2p0ZXCV44E2qn7BY2hUgTs3-gwPq1M8gQKMbgAriyP98fo-cvRANQ04tm-qDPBYuYNWhcXKZHg6A127qNPXdqW-A5V-3TGGdKaMtiV-1s3M2bBz2QO0k7ssHH6v--j-8mI6vO5Gt1ejYT_qpj5lspuTXOSgKJd5mCVSgmA-sMTzlS-ZpIRyyAgXAQ8SACJJkoks8UMlBEk4MObto87au6irx6V7elxqm0JRKAPV0sbMo0HAAhGGDj35g86rZW3cdI5iIvADIamjemsqrStra8jjRa1L94UxJfGqo3jVUbzpyAWOv7XLpIRsg_-U4gC5Bp51AS__6OLJOIp-5Z9cV542</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2328545891</pqid></control><display><type>article</type><title>Investigation of Binary Metal (Ni, Co) Selenite as Li‐Ion Battery Anode Materials and Their Conversion Reaction Mechanism with Li Ions</title><source>Wiley Online Library All Journals</source><creator>Park, Gi Dae ; Yang, Sung Jin ; Lee, Jong‐Heun ; Kang, Yun Chan</creator><creatorcontrib>Park, Gi Dae ; Yang, Sung Jin ; Lee, Jong‐Heun ; Kang, Yun Chan</creatorcontrib><description>Highly efficient anode materials with novel compositions for Li‐ion batteries are actively being researched. Multicomponent metal selenite is a promising candidate, capable of improving their electrochemical performance through the formation of metal oxide and selenide heterostructure nanocrystals during the first cycle. Here, the binary nickel–cobalt selenite derived from Ni–Co Prussian blue analogs (PBA) is chosen as the first target material: the Ni–Co PBA are selenized and partially oxidized in sequence, yielding (NiCo)SeO3 phase with a small amount of metal selenate. The conversion mechanism of (NiCo)SeO3 for Li‐ion storage is studied by cyclic voltammetry, in situ X‐ray diffraction, ex situ X‐ray photoelectron spectroscopy, in situ electrochemical impedance spectroscopy, and ex situ transmission electron microscopy. The reversible reaction mechanism of (NiCo)SeO3 with the Li ions is described by the reaction: NiO + CoO + xSeO2 + (1 ‐ x)Se + (4x + 6)Li+ + (4x + 6)e− ↔ Ni + Co + (2x + 2)Li2O + Li2Se. To enhance electrochemical properties, polydopamine‐derived carbon is uniformly coated on (NiCo)SeO3, resulting in excellent cycling and rate performances for Li‐ion storage. The discharge capacity of C‐coated (NiCo)SeO3 is 680 mAh g−1 for the 1500th cycle when cycled at a current density of 5 A g−1. In this study, the synthesis of binary nickel–cobalt selenite derived from Ni–Co Prussian blue analogues anode materials for Li‐ion batteries (LIBs) is introduced. Moreover, the conversion mechanism of (NiCo)SeO3 for Li‐ion storage is systematically studied by various in situ and ex situ analysis.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.201905289</identifier><identifier>PMID: 31736246</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>anode materials ; Anodes ; binary metal selenite ; Cobalt ; Conversion ; conversion mechanism ; Electrochemical analysis ; Electrochemical impedance spectroscopy ; Electrode materials ; Electrons ; Heterostructures ; Intermetallic compounds ; Ion storage ; Lithium oxides ; Lithium-ion batteries ; Li‐ion batteries ; Nanocrystals ; Nanotechnology ; Nickel ; Photoelectrons ; Pigments ; Prussian blue analogues ; Reaction mechanisms ; Selenium ; Spectrum analysis</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2019-12, Vol.15 (51), p.e1905289-n/a</ispartof><rights>2019 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2019 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4129-f0f8fea169f7db99e824e2b34a49291016ed068565bee090bd8db47a880b6e223</citedby><cites>FETCH-LOGICAL-c4129-f0f8fea169f7db99e824e2b34a49291016ed068565bee090bd8db47a880b6e223</cites><orcidid>0000-0001-5769-5761</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.201905289$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.201905289$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31736246$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Park, Gi Dae</creatorcontrib><creatorcontrib>Yang, Sung Jin</creatorcontrib><creatorcontrib>Lee, Jong‐Heun</creatorcontrib><creatorcontrib>Kang, Yun Chan</creatorcontrib><title>Investigation of Binary Metal (Ni, Co) Selenite as Li‐Ion Battery Anode Materials and Their Conversion Reaction Mechanism with Li Ions</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>Highly efficient anode materials with novel compositions for Li‐ion batteries are actively being researched. Multicomponent metal selenite is a promising candidate, capable of improving their electrochemical performance through the formation of metal oxide and selenide heterostructure nanocrystals during the first cycle. Here, the binary nickel–cobalt selenite derived from Ni–Co Prussian blue analogs (PBA) is chosen as the first target material: the Ni–Co PBA are selenized and partially oxidized in sequence, yielding (NiCo)SeO3 phase with a small amount of metal selenate. The conversion mechanism of (NiCo)SeO3 for Li‐ion storage is studied by cyclic voltammetry, in situ X‐ray diffraction, ex situ X‐ray photoelectron spectroscopy, in situ electrochemical impedance spectroscopy, and ex situ transmission electron microscopy. The reversible reaction mechanism of (NiCo)SeO3 with the Li ions is described by the reaction: NiO + CoO + xSeO2 + (1 ‐ x)Se + (4x + 6)Li+ + (4x + 6)e− ↔ Ni + Co + (2x + 2)Li2O + Li2Se. To enhance electrochemical properties, polydopamine‐derived carbon is uniformly coated on (NiCo)SeO3, resulting in excellent cycling and rate performances for Li‐ion storage. The discharge capacity of C‐coated (NiCo)SeO3 is 680 mAh g−1 for the 1500th cycle when cycled at a current density of 5 A g−1. In this study, the synthesis of binary nickel–cobalt selenite derived from Ni–Co Prussian blue analogues anode materials for Li‐ion batteries (LIBs) is introduced. Moreover, the conversion mechanism of (NiCo)SeO3 for Li‐ion storage is systematically studied by various in situ and ex situ analysis.</description><subject>anode materials</subject><subject>Anodes</subject><subject>binary metal selenite</subject><subject>Cobalt</subject><subject>Conversion</subject><subject>conversion mechanism</subject><subject>Electrochemical analysis</subject><subject>Electrochemical impedance spectroscopy</subject><subject>Electrode materials</subject><subject>Electrons</subject><subject>Heterostructures</subject><subject>Intermetallic compounds</subject><subject>Ion storage</subject><subject>Lithium oxides</subject><subject>Lithium-ion batteries</subject><subject>Li‐ion batteries</subject><subject>Nanocrystals</subject><subject>Nanotechnology</subject><subject>Nickel</subject><subject>Photoelectrons</subject><subject>Pigments</subject><subject>Prussian blue analogues</subject><subject>Reaction mechanisms</subject><subject>Selenium</subject><subject>Spectrum analysis</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkTtPwzAYRS0EouWxMiJLLEWixXYSxx7bikelFCRa5shJvlBXiVPiFMTGyMhv5JfgUigSC5Nt6dzjz74IHVHSo4Swc1sWRY8RKknAhNxCbcqp1-WCye3NnpIW2rN2TohHmR_uopZHQ48zn7fR28g8gW30g2p0ZXCV44E2qn7BY2hUgTs3-gwPq1M8gQKMbgAriyP98fo-cvRANQ04tm-qDPBYuYNWhcXKZHg6A127qNPXdqW-A5V-3TGGdKaMtiV-1s3M2bBz2QO0k7ssHH6v--j-8mI6vO5Gt1ejYT_qpj5lspuTXOSgKJd5mCVSgmA-sMTzlS-ZpIRyyAgXAQ8SACJJkoks8UMlBEk4MObto87au6irx6V7elxqm0JRKAPV0sbMo0HAAhGGDj35g86rZW3cdI5iIvADIamjemsqrStra8jjRa1L94UxJfGqo3jVUbzpyAWOv7XLpIRsg_-U4gC5Bp51AS__6OLJOIp-5Z9cV542</recordid><startdate>20191201</startdate><enddate>20191201</enddate><creator>Park, Gi Dae</creator><creator>Yang, Sung Jin</creator><creator>Lee, Jong‐Heun</creator><creator>Kang, Yun Chan</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5769-5761</orcidid></search><sort><creationdate>20191201</creationdate><title>Investigation of Binary Metal (Ni, Co) Selenite as Li‐Ion Battery Anode Materials and Their Conversion Reaction Mechanism with Li Ions</title><author>Park, Gi Dae ; Yang, Sung Jin ; Lee, Jong‐Heun ; Kang, Yun Chan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4129-f0f8fea169f7db99e824e2b34a49291016ed068565bee090bd8db47a880b6e223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>anode materials</topic><topic>Anodes</topic><topic>binary metal selenite</topic><topic>Cobalt</topic><topic>Conversion</topic><topic>conversion mechanism</topic><topic>Electrochemical analysis</topic><topic>Electrochemical impedance spectroscopy</topic><topic>Electrode materials</topic><topic>Electrons</topic><topic>Heterostructures</topic><topic>Intermetallic compounds</topic><topic>Ion storage</topic><topic>Lithium oxides</topic><topic>Lithium-ion batteries</topic><topic>Li‐ion batteries</topic><topic>Nanocrystals</topic><topic>Nanotechnology</topic><topic>Nickel</topic><topic>Photoelectrons</topic><topic>Pigments</topic><topic>Prussian blue analogues</topic><topic>Reaction mechanisms</topic><topic>Selenium</topic><topic>Spectrum analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Park, Gi Dae</creatorcontrib><creatorcontrib>Yang, Sung Jin</creatorcontrib><creatorcontrib>Lee, Jong‐Heun</creatorcontrib><creatorcontrib>Kang, Yun Chan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Park, Gi Dae</au><au>Yang, Sung Jin</au><au>Lee, Jong‐Heun</au><au>Kang, Yun Chan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigation of Binary Metal (Ni, Co) Selenite as Li‐Ion Battery Anode Materials and Their Conversion Reaction Mechanism with Li Ions</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2019-12-01</date><risdate>2019</risdate><volume>15</volume><issue>51</issue><spage>e1905289</spage><epage>n/a</epage><pages>e1905289-n/a</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>Highly efficient anode materials with novel compositions for Li‐ion batteries are actively being researched. Multicomponent metal selenite is a promising candidate, capable of improving their electrochemical performance through the formation of metal oxide and selenide heterostructure nanocrystals during the first cycle. Here, the binary nickel–cobalt selenite derived from Ni–Co Prussian blue analogs (PBA) is chosen as the first target material: the Ni–Co PBA are selenized and partially oxidized in sequence, yielding (NiCo)SeO3 phase with a small amount of metal selenate. The conversion mechanism of (NiCo)SeO3 for Li‐ion storage is studied by cyclic voltammetry, in situ X‐ray diffraction, ex situ X‐ray photoelectron spectroscopy, in situ electrochemical impedance spectroscopy, and ex situ transmission electron microscopy. The reversible reaction mechanism of (NiCo)SeO3 with the Li ions is described by the reaction: NiO + CoO + xSeO2 + (1 ‐ x)Se + (4x + 6)Li+ + (4x + 6)e− ↔ Ni + Co + (2x + 2)Li2O + Li2Se. To enhance electrochemical properties, polydopamine‐derived carbon is uniformly coated on (NiCo)SeO3, resulting in excellent cycling and rate performances for Li‐ion storage. The discharge capacity of C‐coated (NiCo)SeO3 is 680 mAh g−1 for the 1500th cycle when cycled at a current density of 5 A g−1. In this study, the synthesis of binary nickel–cobalt selenite derived from Ni–Co Prussian blue analogues anode materials for Li‐ion batteries (LIBs) is introduced. Moreover, the conversion mechanism of (NiCo)SeO3 for Li‐ion storage is systematically studied by various in situ and ex situ analysis.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>31736246</pmid><doi>10.1002/smll.201905289</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-5769-5761</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1613-6810
ispartof Small (Weinheim an der Bergstrasse, Germany), 2019-12, Vol.15 (51), p.e1905289-n/a
issn 1613-6810
1613-6829
language eng
recordid cdi_proquest_miscellaneous_2315525877
source Wiley Online Library All Journals
subjects anode materials
Anodes
binary metal selenite
Cobalt
Conversion
conversion mechanism
Electrochemical analysis
Electrochemical impedance spectroscopy
Electrode materials
Electrons
Heterostructures
Intermetallic compounds
Ion storage
Lithium oxides
Lithium-ion batteries
Li‐ion batteries
Nanocrystals
Nanotechnology
Nickel
Photoelectrons
Pigments
Prussian blue analogues
Reaction mechanisms
Selenium
Spectrum analysis
title Investigation of Binary Metal (Ni, Co) Selenite as Li‐Ion Battery Anode Materials and Their Conversion Reaction Mechanism with Li Ions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T18%3A51%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigation%20of%20Binary%20Metal%20(Ni,%20Co)%20Selenite%20as%20Li%E2%80%90Ion%20Battery%20Anode%20Materials%20and%20Their%20Conversion%20Reaction%20Mechanism%20with%20Li%20Ions&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Park,%20Gi%20Dae&rft.date=2019-12-01&rft.volume=15&rft.issue=51&rft.spage=e1905289&rft.epage=n/a&rft.pages=e1905289-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.201905289&rft_dat=%3Cproquest_cross%3E2315525877%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2328545891&rft_id=info:pmid/31736246&rfr_iscdi=true