Investigation of Binary Metal (Ni, Co) Selenite as Li‐Ion Battery Anode Materials and Their Conversion Reaction Mechanism with Li Ions
Highly efficient anode materials with novel compositions for Li‐ion batteries are actively being researched. Multicomponent metal selenite is a promising candidate, capable of improving their electrochemical performance through the formation of metal oxide and selenide heterostructure nanocrystals d...
Gespeichert in:
Veröffentlicht in: | Small (Weinheim an der Bergstrasse, Germany) Germany), 2019-12, Vol.15 (51), p.e1905289-n/a |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 51 |
container_start_page | e1905289 |
container_title | Small (Weinheim an der Bergstrasse, Germany) |
container_volume | 15 |
creator | Park, Gi Dae Yang, Sung Jin Lee, Jong‐Heun Kang, Yun Chan |
description | Highly efficient anode materials with novel compositions for Li‐ion batteries are actively being researched. Multicomponent metal selenite is a promising candidate, capable of improving their electrochemical performance through the formation of metal oxide and selenide heterostructure nanocrystals during the first cycle. Here, the binary nickel–cobalt selenite derived from Ni–Co Prussian blue analogs (PBA) is chosen as the first target material: the Ni–Co PBA are selenized and partially oxidized in sequence, yielding (NiCo)SeO3 phase with a small amount of metal selenate. The conversion mechanism of (NiCo)SeO3 for Li‐ion storage is studied by cyclic voltammetry, in situ X‐ray diffraction, ex situ X‐ray photoelectron spectroscopy, in situ electrochemical impedance spectroscopy, and ex situ transmission electron microscopy. The reversible reaction mechanism of (NiCo)SeO3 with the Li ions is described by the reaction: NiO + CoO + xSeO2 + (1 ‐ x)Se + (4x + 6)Li+ + (4x + 6)e− ↔ Ni + Co + (2x + 2)Li2O + Li2Se. To enhance electrochemical properties, polydopamine‐derived carbon is uniformly coated on (NiCo)SeO3, resulting in excellent cycling and rate performances for Li‐ion storage. The discharge capacity of C‐coated (NiCo)SeO3 is 680 mAh g−1 for the 1500th cycle when cycled at a current density of 5 A g−1.
In this study, the synthesis of binary nickel–cobalt selenite derived from Ni–Co Prussian blue analogues anode materials for Li‐ion batteries (LIBs) is introduced. Moreover, the conversion mechanism of (NiCo)SeO3 for Li‐ion storage is systematically studied by various in situ and ex situ analysis. |
doi_str_mv | 10.1002/smll.201905289 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2315525877</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2315525877</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4129-f0f8fea169f7db99e824e2b34a49291016ed068565bee090bd8db47a880b6e223</originalsourceid><addsrcrecordid>eNqFkTtPwzAYRS0EouWxMiJLLEWixXYSxx7bikelFCRa5shJvlBXiVPiFMTGyMhv5JfgUigSC5Nt6dzjz74IHVHSo4Swc1sWRY8RKknAhNxCbcqp1-WCye3NnpIW2rN2TohHmR_uopZHQ48zn7fR28g8gW30g2p0ZXCV44E2qn7BY2hUgTs3-gwPq1M8gQKMbgAriyP98fo-cvRANQ04tm-qDPBYuYNWhcXKZHg6A127qNPXdqW-A5V-3TGGdKaMtiV-1s3M2bBz2QO0k7ssHH6v--j-8mI6vO5Gt1ejYT_qpj5lspuTXOSgKJd5mCVSgmA-sMTzlS-ZpIRyyAgXAQ8SACJJkoks8UMlBEk4MObto87au6irx6V7elxqm0JRKAPV0sbMo0HAAhGGDj35g86rZW3cdI5iIvADIamjemsqrStra8jjRa1L94UxJfGqo3jVUbzpyAWOv7XLpIRsg_-U4gC5Bp51AS__6OLJOIp-5Z9cV542</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2328545891</pqid></control><display><type>article</type><title>Investigation of Binary Metal (Ni, Co) Selenite as Li‐Ion Battery Anode Materials and Their Conversion Reaction Mechanism with Li Ions</title><source>Wiley Online Library All Journals</source><creator>Park, Gi Dae ; Yang, Sung Jin ; Lee, Jong‐Heun ; Kang, Yun Chan</creator><creatorcontrib>Park, Gi Dae ; Yang, Sung Jin ; Lee, Jong‐Heun ; Kang, Yun Chan</creatorcontrib><description>Highly efficient anode materials with novel compositions for Li‐ion batteries are actively being researched. Multicomponent metal selenite is a promising candidate, capable of improving their electrochemical performance through the formation of metal oxide and selenide heterostructure nanocrystals during the first cycle. Here, the binary nickel–cobalt selenite derived from Ni–Co Prussian blue analogs (PBA) is chosen as the first target material: the Ni–Co PBA are selenized and partially oxidized in sequence, yielding (NiCo)SeO3 phase with a small amount of metal selenate. The conversion mechanism of (NiCo)SeO3 for Li‐ion storage is studied by cyclic voltammetry, in situ X‐ray diffraction, ex situ X‐ray photoelectron spectroscopy, in situ electrochemical impedance spectroscopy, and ex situ transmission electron microscopy. The reversible reaction mechanism of (NiCo)SeO3 with the Li ions is described by the reaction: NiO + CoO + xSeO2 + (1 ‐ x)Se + (4x + 6)Li+ + (4x + 6)e− ↔ Ni + Co + (2x + 2)Li2O + Li2Se. To enhance electrochemical properties, polydopamine‐derived carbon is uniformly coated on (NiCo)SeO3, resulting in excellent cycling and rate performances for Li‐ion storage. The discharge capacity of C‐coated (NiCo)SeO3 is 680 mAh g−1 for the 1500th cycle when cycled at a current density of 5 A g−1.
In this study, the synthesis of binary nickel–cobalt selenite derived from Ni–Co Prussian blue analogues anode materials for Li‐ion batteries (LIBs) is introduced. Moreover, the conversion mechanism of (NiCo)SeO3 for Li‐ion storage is systematically studied by various in situ and ex situ analysis.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.201905289</identifier><identifier>PMID: 31736246</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>anode materials ; Anodes ; binary metal selenite ; Cobalt ; Conversion ; conversion mechanism ; Electrochemical analysis ; Electrochemical impedance spectroscopy ; Electrode materials ; Electrons ; Heterostructures ; Intermetallic compounds ; Ion storage ; Lithium oxides ; Lithium-ion batteries ; Li‐ion batteries ; Nanocrystals ; Nanotechnology ; Nickel ; Photoelectrons ; Pigments ; Prussian blue analogues ; Reaction mechanisms ; Selenium ; Spectrum analysis</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2019-12, Vol.15 (51), p.e1905289-n/a</ispartof><rights>2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4129-f0f8fea169f7db99e824e2b34a49291016ed068565bee090bd8db47a880b6e223</citedby><cites>FETCH-LOGICAL-c4129-f0f8fea169f7db99e824e2b34a49291016ed068565bee090bd8db47a880b6e223</cites><orcidid>0000-0001-5769-5761</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.201905289$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.201905289$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31736246$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Park, Gi Dae</creatorcontrib><creatorcontrib>Yang, Sung Jin</creatorcontrib><creatorcontrib>Lee, Jong‐Heun</creatorcontrib><creatorcontrib>Kang, Yun Chan</creatorcontrib><title>Investigation of Binary Metal (Ni, Co) Selenite as Li‐Ion Battery Anode Materials and Their Conversion Reaction Mechanism with Li Ions</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>Highly efficient anode materials with novel compositions for Li‐ion batteries are actively being researched. Multicomponent metal selenite is a promising candidate, capable of improving their electrochemical performance through the formation of metal oxide and selenide heterostructure nanocrystals during the first cycle. Here, the binary nickel–cobalt selenite derived from Ni–Co Prussian blue analogs (PBA) is chosen as the first target material: the Ni–Co PBA are selenized and partially oxidized in sequence, yielding (NiCo)SeO3 phase with a small amount of metal selenate. The conversion mechanism of (NiCo)SeO3 for Li‐ion storage is studied by cyclic voltammetry, in situ X‐ray diffraction, ex situ X‐ray photoelectron spectroscopy, in situ electrochemical impedance spectroscopy, and ex situ transmission electron microscopy. The reversible reaction mechanism of (NiCo)SeO3 with the Li ions is described by the reaction: NiO + CoO + xSeO2 + (1 ‐ x)Se + (4x + 6)Li+ + (4x + 6)e− ↔ Ni + Co + (2x + 2)Li2O + Li2Se. To enhance electrochemical properties, polydopamine‐derived carbon is uniformly coated on (NiCo)SeO3, resulting in excellent cycling and rate performances for Li‐ion storage. The discharge capacity of C‐coated (NiCo)SeO3 is 680 mAh g−1 for the 1500th cycle when cycled at a current density of 5 A g−1.
In this study, the synthesis of binary nickel–cobalt selenite derived from Ni–Co Prussian blue analogues anode materials for Li‐ion batteries (LIBs) is introduced. Moreover, the conversion mechanism of (NiCo)SeO3 for Li‐ion storage is systematically studied by various in situ and ex situ analysis.</description><subject>anode materials</subject><subject>Anodes</subject><subject>binary metal selenite</subject><subject>Cobalt</subject><subject>Conversion</subject><subject>conversion mechanism</subject><subject>Electrochemical analysis</subject><subject>Electrochemical impedance spectroscopy</subject><subject>Electrode materials</subject><subject>Electrons</subject><subject>Heterostructures</subject><subject>Intermetallic compounds</subject><subject>Ion storage</subject><subject>Lithium oxides</subject><subject>Lithium-ion batteries</subject><subject>Li‐ion batteries</subject><subject>Nanocrystals</subject><subject>Nanotechnology</subject><subject>Nickel</subject><subject>Photoelectrons</subject><subject>Pigments</subject><subject>Prussian blue analogues</subject><subject>Reaction mechanisms</subject><subject>Selenium</subject><subject>Spectrum analysis</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkTtPwzAYRS0EouWxMiJLLEWixXYSxx7bikelFCRa5shJvlBXiVPiFMTGyMhv5JfgUigSC5Nt6dzjz74IHVHSo4Swc1sWRY8RKknAhNxCbcqp1-WCye3NnpIW2rN2TohHmR_uopZHQ48zn7fR28g8gW30g2p0ZXCV44E2qn7BY2hUgTs3-gwPq1M8gQKMbgAriyP98fo-cvRANQ04tm-qDPBYuYNWhcXKZHg6A127qNPXdqW-A5V-3TGGdKaMtiV-1s3M2bBz2QO0k7ssHH6v--j-8mI6vO5Gt1ejYT_qpj5lspuTXOSgKJd5mCVSgmA-sMTzlS-ZpIRyyAgXAQ8SACJJkoks8UMlBEk4MObto87au6irx6V7elxqm0JRKAPV0sbMo0HAAhGGDj35g86rZW3cdI5iIvADIamjemsqrStra8jjRa1L94UxJfGqo3jVUbzpyAWOv7XLpIRsg_-U4gC5Bp51AS__6OLJOIp-5Z9cV542</recordid><startdate>20191201</startdate><enddate>20191201</enddate><creator>Park, Gi Dae</creator><creator>Yang, Sung Jin</creator><creator>Lee, Jong‐Heun</creator><creator>Kang, Yun Chan</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5769-5761</orcidid></search><sort><creationdate>20191201</creationdate><title>Investigation of Binary Metal (Ni, Co) Selenite as Li‐Ion Battery Anode Materials and Their Conversion Reaction Mechanism with Li Ions</title><author>Park, Gi Dae ; Yang, Sung Jin ; Lee, Jong‐Heun ; Kang, Yun Chan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4129-f0f8fea169f7db99e824e2b34a49291016ed068565bee090bd8db47a880b6e223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>anode materials</topic><topic>Anodes</topic><topic>binary metal selenite</topic><topic>Cobalt</topic><topic>Conversion</topic><topic>conversion mechanism</topic><topic>Electrochemical analysis</topic><topic>Electrochemical impedance spectroscopy</topic><topic>Electrode materials</topic><topic>Electrons</topic><topic>Heterostructures</topic><topic>Intermetallic compounds</topic><topic>Ion storage</topic><topic>Lithium oxides</topic><topic>Lithium-ion batteries</topic><topic>Li‐ion batteries</topic><topic>Nanocrystals</topic><topic>Nanotechnology</topic><topic>Nickel</topic><topic>Photoelectrons</topic><topic>Pigments</topic><topic>Prussian blue analogues</topic><topic>Reaction mechanisms</topic><topic>Selenium</topic><topic>Spectrum analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Park, Gi Dae</creatorcontrib><creatorcontrib>Yang, Sung Jin</creatorcontrib><creatorcontrib>Lee, Jong‐Heun</creatorcontrib><creatorcontrib>Kang, Yun Chan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Park, Gi Dae</au><au>Yang, Sung Jin</au><au>Lee, Jong‐Heun</au><au>Kang, Yun Chan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigation of Binary Metal (Ni, Co) Selenite as Li‐Ion Battery Anode Materials and Their Conversion Reaction Mechanism with Li Ions</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2019-12-01</date><risdate>2019</risdate><volume>15</volume><issue>51</issue><spage>e1905289</spage><epage>n/a</epage><pages>e1905289-n/a</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>Highly efficient anode materials with novel compositions for Li‐ion batteries are actively being researched. Multicomponent metal selenite is a promising candidate, capable of improving their electrochemical performance through the formation of metal oxide and selenide heterostructure nanocrystals during the first cycle. Here, the binary nickel–cobalt selenite derived from Ni–Co Prussian blue analogs (PBA) is chosen as the first target material: the Ni–Co PBA are selenized and partially oxidized in sequence, yielding (NiCo)SeO3 phase with a small amount of metal selenate. The conversion mechanism of (NiCo)SeO3 for Li‐ion storage is studied by cyclic voltammetry, in situ X‐ray diffraction, ex situ X‐ray photoelectron spectroscopy, in situ electrochemical impedance spectroscopy, and ex situ transmission electron microscopy. The reversible reaction mechanism of (NiCo)SeO3 with the Li ions is described by the reaction: NiO + CoO + xSeO2 + (1 ‐ x)Se + (4x + 6)Li+ + (4x + 6)e− ↔ Ni + Co + (2x + 2)Li2O + Li2Se. To enhance electrochemical properties, polydopamine‐derived carbon is uniformly coated on (NiCo)SeO3, resulting in excellent cycling and rate performances for Li‐ion storage. The discharge capacity of C‐coated (NiCo)SeO3 is 680 mAh g−1 for the 1500th cycle when cycled at a current density of 5 A g−1.
In this study, the synthesis of binary nickel–cobalt selenite derived from Ni–Co Prussian blue analogues anode materials for Li‐ion batteries (LIBs) is introduced. Moreover, the conversion mechanism of (NiCo)SeO3 for Li‐ion storage is systematically studied by various in situ and ex situ analysis.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>31736246</pmid><doi>10.1002/smll.201905289</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-5769-5761</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1613-6810 |
ispartof | Small (Weinheim an der Bergstrasse, Germany), 2019-12, Vol.15 (51), p.e1905289-n/a |
issn | 1613-6810 1613-6829 |
language | eng |
recordid | cdi_proquest_miscellaneous_2315525877 |
source | Wiley Online Library All Journals |
subjects | anode materials Anodes binary metal selenite Cobalt Conversion conversion mechanism Electrochemical analysis Electrochemical impedance spectroscopy Electrode materials Electrons Heterostructures Intermetallic compounds Ion storage Lithium oxides Lithium-ion batteries Li‐ion batteries Nanocrystals Nanotechnology Nickel Photoelectrons Pigments Prussian blue analogues Reaction mechanisms Selenium Spectrum analysis |
title | Investigation of Binary Metal (Ni, Co) Selenite as Li‐Ion Battery Anode Materials and Their Conversion Reaction Mechanism with Li Ions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T18%3A51%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigation%20of%20Binary%20Metal%20(Ni,%20Co)%20Selenite%20as%20Li%E2%80%90Ion%20Battery%20Anode%20Materials%20and%20Their%20Conversion%20Reaction%20Mechanism%20with%20Li%20Ions&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Park,%20Gi%20Dae&rft.date=2019-12-01&rft.volume=15&rft.issue=51&rft.spage=e1905289&rft.epage=n/a&rft.pages=e1905289-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.201905289&rft_dat=%3Cproquest_cross%3E2315525877%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2328545891&rft_id=info:pmid/31736246&rfr_iscdi=true |