Modeling Antibody-Antigen Complexes by Information-Driven Docking

Antibodies are Y-shaped proteins essential for immune response. Their capability to recognize antigens with high specificity makes them excellent therapeutic targets. Understanding the structural basis of antibody-antigen interactions is therefore crucial for improving our ability to design efficien...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Structure (London) 2020-01, Vol.28 (1), p.119-129.e2
Hauptverfasser: Ambrosetti, Francesco, Jiménez-García, Brian, Roel-Touris, Jorge, Bonvin, Alexandre M.J.J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 129.e2
container_issue 1
container_start_page 119
container_title Structure (London)
container_volume 28
creator Ambrosetti, Francesco
Jiménez-García, Brian
Roel-Touris, Jorge
Bonvin, Alexandre M.J.J.
description Antibodies are Y-shaped proteins essential for immune response. Their capability to recognize antigens with high specificity makes them excellent therapeutic targets. Understanding the structural basis of antibody-antigen interactions is therefore crucial for improving our ability to design efficient biological drugs. Computational approaches such as molecular docking are providing a valuable and fast alternative to experimental structural characterization for these complexes. We investigate here how information about complementarity-determining regions and binding epitopes can be used to drive the modeling process, and present a comparative study of four different docking software suites (ClusPro, LightDock, ZDOCK, and HADDOCK) providing specific options for antibody-antigen modeling. Their performance on a dataset of 16 complexes is reported. HADDOCK, which includes information to drive the docking, is shown to perform best in terms of both success rate and quality of the generated models in both the presence and absence of information about the epitope on the antigen. [Display omitted] •Accurate prediction of antibody-antigen structure is still a challenge•Hypervariable loops of antibodies can be used to bias the modeling process•Antigen epitope information, even loosely defined, is valuable for docking•HADDOCK shows better performance and generates higher-accuracy models Ambrosetti et al. demonstrate that, for the modeling of antibody-antigen complexes, using information about hypervariable loops and, when available, a loose definition of the epitope, improves the docking results. In this context, HADDOCK, which directly uses this information to guide docking, performs better than the other three software applications tested.
doi_str_mv 10.1016/j.str.2019.10.011
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2315103571</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0969212619303521</els_id><sourcerecordid>2315103571</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-b1d2112ecf5bf979ce2562f49b6760b3781f0db92e13e764092b794423dad0533</originalsourceid><addsrcrecordid>eNp9kDtPwzAUhS0EgvL4ASyoI0uKr53YtZiq8pRALDBbsX2DXJK42GlF_z2uCoxM93XOke5HyDnQCVAQV4tJGuKEUVB5nlCAPTKCqZwWJUzFPhlRJVTBgIkjcpzSglLKKkoPyREHyWQpxYjMnoPD1vfv41k_eBPcptg279iP56FbtviFaWw248e-CbGrBx_64ib6db7fBPuRjafkoKnbhGc_9YS83d2-zh-Kp5f7x_nsqbBciaEw4BgAQ9tUplFSWWSVYE2pjJCCGi6n0FBnFEPgKEVJFTNSlSXjrna04vyEXO5ylzF8rjANuvPJYtvWPYZV0oxDBZRXErIUdlIbQ0oRG72MvqvjRgPVW3J6oTM5vSW3XWVy2XPxE78yHbo_xy-qLLjeCTA_ufYYdbIee4vOR7SDdsH_E_8Nh799dA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2315103571</pqid></control><display><type>article</type><title>Modeling Antibody-Antigen Complexes by Information-Driven Docking</title><source>ScienceDirect Journals (5 years ago - present)</source><source>Cell Press Free Archives</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Ambrosetti, Francesco ; Jiménez-García, Brian ; Roel-Touris, Jorge ; Bonvin, Alexandre M.J.J.</creator><creatorcontrib>Ambrosetti, Francesco ; Jiménez-García, Brian ; Roel-Touris, Jorge ; Bonvin, Alexandre M.J.J.</creatorcontrib><description>Antibodies are Y-shaped proteins essential for immune response. Their capability to recognize antigens with high specificity makes them excellent therapeutic targets. Understanding the structural basis of antibody-antigen interactions is therefore crucial for improving our ability to design efficient biological drugs. Computational approaches such as molecular docking are providing a valuable and fast alternative to experimental structural characterization for these complexes. We investigate here how information about complementarity-determining regions and binding epitopes can be used to drive the modeling process, and present a comparative study of four different docking software suites (ClusPro, LightDock, ZDOCK, and HADDOCK) providing specific options for antibody-antigen modeling. Their performance on a dataset of 16 complexes is reported. HADDOCK, which includes information to drive the docking, is shown to perform best in terms of both success rate and quality of the generated models in both the presence and absence of information about the epitope on the antigen. [Display omitted] •Accurate prediction of antibody-antigen structure is still a challenge•Hypervariable loops of antibodies can be used to bias the modeling process•Antigen epitope information, even loosely defined, is valuable for docking•HADDOCK shows better performance and generates higher-accuracy models Ambrosetti et al. demonstrate that, for the modeling of antibody-antigen complexes, using information about hypervariable loops and, when available, a loose definition of the epitope, improves the docking results. In this context, HADDOCK, which directly uses this information to guide docking, performs better than the other three software applications tested.</description><identifier>ISSN: 0969-2126</identifier><identifier>EISSN: 1878-4186</identifier><identifier>DOI: 10.1016/j.str.2019.10.011</identifier><identifier>PMID: 31727476</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>antibody ; binding sites ; ClusPro ; conformational changes ; docking ; H3 modeling ; HADDOCK ; LightDock ; ZDOCK</subject><ispartof>Structure (London), 2020-01, Vol.28 (1), p.119-129.e2</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright © 2019 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-b1d2112ecf5bf979ce2562f49b6760b3781f0db92e13e764092b794423dad0533</citedby><cites>FETCH-LOGICAL-c396t-b1d2112ecf5bf979ce2562f49b6760b3781f0db92e13e764092b794423dad0533</cites><orcidid>0000-0001-7369-1322</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0969212619303521$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31727476$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ambrosetti, Francesco</creatorcontrib><creatorcontrib>Jiménez-García, Brian</creatorcontrib><creatorcontrib>Roel-Touris, Jorge</creatorcontrib><creatorcontrib>Bonvin, Alexandre M.J.J.</creatorcontrib><title>Modeling Antibody-Antigen Complexes by Information-Driven Docking</title><title>Structure (London)</title><addtitle>Structure</addtitle><description>Antibodies are Y-shaped proteins essential for immune response. Their capability to recognize antigens with high specificity makes them excellent therapeutic targets. Understanding the structural basis of antibody-antigen interactions is therefore crucial for improving our ability to design efficient biological drugs. Computational approaches such as molecular docking are providing a valuable and fast alternative to experimental structural characterization for these complexes. We investigate here how information about complementarity-determining regions and binding epitopes can be used to drive the modeling process, and present a comparative study of four different docking software suites (ClusPro, LightDock, ZDOCK, and HADDOCK) providing specific options for antibody-antigen modeling. Their performance on a dataset of 16 complexes is reported. HADDOCK, which includes information to drive the docking, is shown to perform best in terms of both success rate and quality of the generated models in both the presence and absence of information about the epitope on the antigen. [Display omitted] •Accurate prediction of antibody-antigen structure is still a challenge•Hypervariable loops of antibodies can be used to bias the modeling process•Antigen epitope information, even loosely defined, is valuable for docking•HADDOCK shows better performance and generates higher-accuracy models Ambrosetti et al. demonstrate that, for the modeling of antibody-antigen complexes, using information about hypervariable loops and, when available, a loose definition of the epitope, improves the docking results. In this context, HADDOCK, which directly uses this information to guide docking, performs better than the other three software applications tested.</description><subject>antibody</subject><subject>binding sites</subject><subject>ClusPro</subject><subject>conformational changes</subject><subject>docking</subject><subject>H3 modeling</subject><subject>HADDOCK</subject><subject>LightDock</subject><subject>ZDOCK</subject><issn>0969-2126</issn><issn>1878-4186</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kDtPwzAUhS0EgvL4ASyoI0uKr53YtZiq8pRALDBbsX2DXJK42GlF_z2uCoxM93XOke5HyDnQCVAQV4tJGuKEUVB5nlCAPTKCqZwWJUzFPhlRJVTBgIkjcpzSglLKKkoPyREHyWQpxYjMnoPD1vfv41k_eBPcptg279iP56FbtviFaWw248e-CbGrBx_64ib6db7fBPuRjafkoKnbhGc_9YS83d2-zh-Kp5f7x_nsqbBciaEw4BgAQ9tUplFSWWSVYE2pjJCCGi6n0FBnFEPgKEVJFTNSlSXjrna04vyEXO5ylzF8rjANuvPJYtvWPYZV0oxDBZRXErIUdlIbQ0oRG72MvqvjRgPVW3J6oTM5vSW3XWVy2XPxE78yHbo_xy-qLLjeCTA_ufYYdbIee4vOR7SDdsH_E_8Nh799dA</recordid><startdate>20200107</startdate><enddate>20200107</enddate><creator>Ambrosetti, Francesco</creator><creator>Jiménez-García, Brian</creator><creator>Roel-Touris, Jorge</creator><creator>Bonvin, Alexandre M.J.J.</creator><general>Elsevier Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7369-1322</orcidid></search><sort><creationdate>20200107</creationdate><title>Modeling Antibody-Antigen Complexes by Information-Driven Docking</title><author>Ambrosetti, Francesco ; Jiménez-García, Brian ; Roel-Touris, Jorge ; Bonvin, Alexandre M.J.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-b1d2112ecf5bf979ce2562f49b6760b3781f0db92e13e764092b794423dad0533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>antibody</topic><topic>binding sites</topic><topic>ClusPro</topic><topic>conformational changes</topic><topic>docking</topic><topic>H3 modeling</topic><topic>HADDOCK</topic><topic>LightDock</topic><topic>ZDOCK</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ambrosetti, Francesco</creatorcontrib><creatorcontrib>Jiménez-García, Brian</creatorcontrib><creatorcontrib>Roel-Touris, Jorge</creatorcontrib><creatorcontrib>Bonvin, Alexandre M.J.J.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Structure (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ambrosetti, Francesco</au><au>Jiménez-García, Brian</au><au>Roel-Touris, Jorge</au><au>Bonvin, Alexandre M.J.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling Antibody-Antigen Complexes by Information-Driven Docking</atitle><jtitle>Structure (London)</jtitle><addtitle>Structure</addtitle><date>2020-01-07</date><risdate>2020</risdate><volume>28</volume><issue>1</issue><spage>119</spage><epage>129.e2</epage><pages>119-129.e2</pages><issn>0969-2126</issn><eissn>1878-4186</eissn><abstract>Antibodies are Y-shaped proteins essential for immune response. Their capability to recognize antigens with high specificity makes them excellent therapeutic targets. Understanding the structural basis of antibody-antigen interactions is therefore crucial for improving our ability to design efficient biological drugs. Computational approaches such as molecular docking are providing a valuable and fast alternative to experimental structural characterization for these complexes. We investigate here how information about complementarity-determining regions and binding epitopes can be used to drive the modeling process, and present a comparative study of four different docking software suites (ClusPro, LightDock, ZDOCK, and HADDOCK) providing specific options for antibody-antigen modeling. Their performance on a dataset of 16 complexes is reported. HADDOCK, which includes information to drive the docking, is shown to perform best in terms of both success rate and quality of the generated models in both the presence and absence of information about the epitope on the antigen. [Display omitted] •Accurate prediction of antibody-antigen structure is still a challenge•Hypervariable loops of antibodies can be used to bias the modeling process•Antigen epitope information, even loosely defined, is valuable for docking•HADDOCK shows better performance and generates higher-accuracy models Ambrosetti et al. demonstrate that, for the modeling of antibody-antigen complexes, using information about hypervariable loops and, when available, a loose definition of the epitope, improves the docking results. In this context, HADDOCK, which directly uses this information to guide docking, performs better than the other three software applications tested.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>31727476</pmid><doi>10.1016/j.str.2019.10.011</doi><orcidid>https://orcid.org/0000-0001-7369-1322</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0969-2126
ispartof Structure (London), 2020-01, Vol.28 (1), p.119-129.e2
issn 0969-2126
1878-4186
language eng
recordid cdi_proquest_miscellaneous_2315103571
source ScienceDirect Journals (5 years ago - present); Cell Press Free Archives; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Free Full-Text Journals in Chemistry
subjects antibody
binding sites
ClusPro
conformational changes
docking
H3 modeling
HADDOCK
LightDock
ZDOCK
title Modeling Antibody-Antigen Complexes by Information-Driven Docking
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T21%3A50%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20Antibody-Antigen%20Complexes%20by%20Information-Driven%20Docking&rft.jtitle=Structure%20(London)&rft.au=Ambrosetti,%20Francesco&rft.date=2020-01-07&rft.volume=28&rft.issue=1&rft.spage=119&rft.epage=129.e2&rft.pages=119-129.e2&rft.issn=0969-2126&rft.eissn=1878-4186&rft_id=info:doi/10.1016/j.str.2019.10.011&rft_dat=%3Cproquest_cross%3E2315103571%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2315103571&rft_id=info:pmid/31727476&rft_els_id=S0969212619303521&rfr_iscdi=true