Structural bases that underline Trypanosoma cruzi calreticulin proinfective, antiangiogenic and antitumor properties

Microbes have developed mechanisms to resist the host immune defenses and some elicit antitumor immune responses. About 6 million people are infected with Trypanosoma cruzi, the protozoan agent of Chagas’ disease, the sixth neglected tropical disease worldwide. Eighty years ago, G. Roskin and N. Kly...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Immunobiology (1979) 2020-01, Vol.225 (1), p.151863-151863, Article 151863
Hauptverfasser: Peña Álvarez, Jaime, Teneb, Jaime, Maldonado, Ismael, Weinberger, Katherine, Rosas, Carlos, Lemus, David, Valck, Carolina, Olivera-Nappa, Álvaro, Asenjo, Juan A., Ferreira, Arturo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 151863
container_issue 1
container_start_page 151863
container_title Immunobiology (1979)
container_volume 225
creator Peña Álvarez, Jaime
Teneb, Jaime
Maldonado, Ismael
Weinberger, Katherine
Rosas, Carlos
Lemus, David
Valck, Carolina
Olivera-Nappa, Álvaro
Asenjo, Juan A.
Ferreira, Arturo
description Microbes have developed mechanisms to resist the host immune defenses and some elicit antitumor immune responses. About 6 million people are infected with Trypanosoma cruzi, the protozoan agent of Chagas’ disease, the sixth neglected tropical disease worldwide. Eighty years ago, G. Roskin and N. Klyuyeva proposed that T. cruzi infection mediates an anti-cancer activity. This observation has been reproduced by several other laboratories, but no molecular basis has been proposed. We have shown that the highly pleiotropic chaperone calreticulin (TcCalr, formerly known as TcCRT), translocates from the parasite ER to the exterior, where it mediates infection. Similar to its human counterpart HuCALR (formerly known as HuCRT), TcCalr inhibits C1 in its capacity to initiate the classical pathway of complement activation. We have also proposed that TcCalr inhibits angiogenesis and it is a likely mediator of antitumor effects. We have generated several in silico structural TcCalr models to delimit a peptide (VC-TcCalr) at the TcCalr N-domain. Chemically synthesized VC-TcCalr did bind to C1q and was anti-angiogenic in Gallus gallus chorioallantoic membrane assays. These properties were associated with structural features, as determined in silico. VC-TcCalr, a strong dipole, interacts with charged proteins such as collagen-like tails and scavenger receptors. Comparatively, HuCALR has less polarity and spatial stability, probably due to at least substitutions of Gln for Gly, Arg for Lys, Arg for Asp and Ser for Arg that hinder protein-protein interactions. These differences can explain, at least in part, how TcCalr inhibits the complement activation pathway and has higher efficiency as an antiangiogenic and antitumor agent than HuCALR.
doi_str_mv 10.1016/j.imbio.2019.10.012
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2315099785</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0171298519303651</els_id><sourcerecordid>2315099785</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-f643048e68d2c5ce21a45db1537d0e4dbd8bb5ef4e8d0b1171af8c44aae4605e3</originalsourceid><addsrcrecordid>eNp9kE1v1DAQhi0EotvCL0BCOXIgiz_ijXPgUK1KW6lSD5Sz5diTMqvEXvxRqfx6vN3SY0_WzDzjV_MQ8onRNaNs8223xmXEsOaUDbWzpoy_ISumetUK3g9vyYqynrV8UPKEnKa0oxXkvXpPTgTrBa_FiuSfORabSzRzM5oEqcm_TW6KdxBn9NDcxce98SGFxTQ2lr_YWDNHyGhLnTf7GNBPYDM-wNfG-IzG32O4B4-2lu6plcsS4gHdQ8wI6QN5N5k5wcfn94z8-nFxt71qb24vr7fnN60VcsjttOkE7RRslONWWuDMdNKNTIreUejc6NQ4Spg6UI6OrB5rJmW7zhjoNlSCOCNfjv_W6D8FUtYLJgvzbDyEkjQXTNJh6JWsqDiiNoaUIkx6H3Ex8VEzqg-69U4_6dYH3Ydm1V23Pj8HlHEB97Lz328Fvh8BqGc-IESdLIK34DBWadoFfDXgH7z6lgw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2315099785</pqid></control><display><type>article</type><title>Structural bases that underline Trypanosoma cruzi calreticulin proinfective, antiangiogenic and antitumor properties</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Peña Álvarez, Jaime ; Teneb, Jaime ; Maldonado, Ismael ; Weinberger, Katherine ; Rosas, Carlos ; Lemus, David ; Valck, Carolina ; Olivera-Nappa, Álvaro ; Asenjo, Juan A. ; Ferreira, Arturo</creator><creatorcontrib>Peña Álvarez, Jaime ; Teneb, Jaime ; Maldonado, Ismael ; Weinberger, Katherine ; Rosas, Carlos ; Lemus, David ; Valck, Carolina ; Olivera-Nappa, Álvaro ; Asenjo, Juan A. ; Ferreira, Arturo</creatorcontrib><description>Microbes have developed mechanisms to resist the host immune defenses and some elicit antitumor immune responses. About 6 million people are infected with Trypanosoma cruzi, the protozoan agent of Chagas’ disease, the sixth neglected tropical disease worldwide. Eighty years ago, G. Roskin and N. Klyuyeva proposed that T. cruzi infection mediates an anti-cancer activity. This observation has been reproduced by several other laboratories, but no molecular basis has been proposed. We have shown that the highly pleiotropic chaperone calreticulin (TcCalr, formerly known as TcCRT), translocates from the parasite ER to the exterior, where it mediates infection. Similar to its human counterpart HuCALR (formerly known as HuCRT), TcCalr inhibits C1 in its capacity to initiate the classical pathway of complement activation. We have also proposed that TcCalr inhibits angiogenesis and it is a likely mediator of antitumor effects. We have generated several in silico structural TcCalr models to delimit a peptide (VC-TcCalr) at the TcCalr N-domain. Chemically synthesized VC-TcCalr did bind to C1q and was anti-angiogenic in Gallus gallus chorioallantoic membrane assays. These properties were associated with structural features, as determined in silico. VC-TcCalr, a strong dipole, interacts with charged proteins such as collagen-like tails and scavenger receptors. Comparatively, HuCALR has less polarity and spatial stability, probably due to at least substitutions of Gln for Gly, Arg for Lys, Arg for Asp and Ser for Arg that hinder protein-protein interactions. These differences can explain, at least in part, how TcCalr inhibits the complement activation pathway and has higher efficiency as an antiangiogenic and antitumor agent than HuCALR.</description><identifier>ISSN: 0171-2985</identifier><identifier>EISSN: 1878-3279</identifier><identifier>DOI: 10.1016/j.imbio.2019.10.012</identifier><identifier>PMID: 31732192</identifier><language>eng</language><publisher>Netherlands: Elsevier GmbH</publisher><subject>Angiogenesis Modulating Agents - chemistry ; Angiogenesis Modulating Agents - metabolism ; Animals ; Antineoplastic Agents - chemistry ; Antineoplastic Agents - metabolism ; C1q ; Calreticulin - chemistry ; Calreticulin - metabolism ; Cells, Cultured ; Chagas Disease - immunology ; Chagas Disease - parasitology ; Chick Embryo ; Complement ; Complement Activation ; Complement C1q - metabolism ; Host-Parasite Interactions ; Humans ; Molecular dynamics ; Molecular Dynamics Simulation ; Molecular Structure ; Protein Interaction Domains and Motifs ; Protein modeling ; Protozoan Proteins - chemistry ; Protozoan Proteins - metabolism ; Sequence Alignment ; Trypanosoma cruzi - physiology ; Trypanosoma cruzi calreticulin ; Tumor growth</subject><ispartof>Immunobiology (1979), 2020-01, Vol.225 (1), p.151863-151863, Article 151863</ispartof><rights>2019 Elsevier GmbH</rights><rights>Copyright © 2019 Elsevier GmbH. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-f643048e68d2c5ce21a45db1537d0e4dbd8bb5ef4e8d0b1171af8c44aae4605e3</citedby><cites>FETCH-LOGICAL-c359t-f643048e68d2c5ce21a45db1537d0e4dbd8bb5ef4e8d0b1171af8c44aae4605e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.imbio.2019.10.012$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27907,27908,45978</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31732192$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Peña Álvarez, Jaime</creatorcontrib><creatorcontrib>Teneb, Jaime</creatorcontrib><creatorcontrib>Maldonado, Ismael</creatorcontrib><creatorcontrib>Weinberger, Katherine</creatorcontrib><creatorcontrib>Rosas, Carlos</creatorcontrib><creatorcontrib>Lemus, David</creatorcontrib><creatorcontrib>Valck, Carolina</creatorcontrib><creatorcontrib>Olivera-Nappa, Álvaro</creatorcontrib><creatorcontrib>Asenjo, Juan A.</creatorcontrib><creatorcontrib>Ferreira, Arturo</creatorcontrib><title>Structural bases that underline Trypanosoma cruzi calreticulin proinfective, antiangiogenic and antitumor properties</title><title>Immunobiology (1979)</title><addtitle>Immunobiology</addtitle><description>Microbes have developed mechanisms to resist the host immune defenses and some elicit antitumor immune responses. About 6 million people are infected with Trypanosoma cruzi, the protozoan agent of Chagas’ disease, the sixth neglected tropical disease worldwide. Eighty years ago, G. Roskin and N. Klyuyeva proposed that T. cruzi infection mediates an anti-cancer activity. This observation has been reproduced by several other laboratories, but no molecular basis has been proposed. We have shown that the highly pleiotropic chaperone calreticulin (TcCalr, formerly known as TcCRT), translocates from the parasite ER to the exterior, where it mediates infection. Similar to its human counterpart HuCALR (formerly known as HuCRT), TcCalr inhibits C1 in its capacity to initiate the classical pathway of complement activation. We have also proposed that TcCalr inhibits angiogenesis and it is a likely mediator of antitumor effects. We have generated several in silico structural TcCalr models to delimit a peptide (VC-TcCalr) at the TcCalr N-domain. Chemically synthesized VC-TcCalr did bind to C1q and was anti-angiogenic in Gallus gallus chorioallantoic membrane assays. These properties were associated with structural features, as determined in silico. VC-TcCalr, a strong dipole, interacts with charged proteins such as collagen-like tails and scavenger receptors. Comparatively, HuCALR has less polarity and spatial stability, probably due to at least substitutions of Gln for Gly, Arg for Lys, Arg for Asp and Ser for Arg that hinder protein-protein interactions. These differences can explain, at least in part, how TcCalr inhibits the complement activation pathway and has higher efficiency as an antiangiogenic and antitumor agent than HuCALR.</description><subject>Angiogenesis Modulating Agents - chemistry</subject><subject>Angiogenesis Modulating Agents - metabolism</subject><subject>Animals</subject><subject>Antineoplastic Agents - chemistry</subject><subject>Antineoplastic Agents - metabolism</subject><subject>C1q</subject><subject>Calreticulin - chemistry</subject><subject>Calreticulin - metabolism</subject><subject>Cells, Cultured</subject><subject>Chagas Disease - immunology</subject><subject>Chagas Disease - parasitology</subject><subject>Chick Embryo</subject><subject>Complement</subject><subject>Complement Activation</subject><subject>Complement C1q - metabolism</subject><subject>Host-Parasite Interactions</subject><subject>Humans</subject><subject>Molecular dynamics</subject><subject>Molecular Dynamics Simulation</subject><subject>Molecular Structure</subject><subject>Protein Interaction Domains and Motifs</subject><subject>Protein modeling</subject><subject>Protozoan Proteins - chemistry</subject><subject>Protozoan Proteins - metabolism</subject><subject>Sequence Alignment</subject><subject>Trypanosoma cruzi - physiology</subject><subject>Trypanosoma cruzi calreticulin</subject><subject>Tumor growth</subject><issn>0171-2985</issn><issn>1878-3279</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1v1DAQhi0EotvCL0BCOXIgiz_ijXPgUK1KW6lSD5Sz5diTMqvEXvxRqfx6vN3SY0_WzDzjV_MQ8onRNaNs8223xmXEsOaUDbWzpoy_ISumetUK3g9vyYqynrV8UPKEnKa0oxXkvXpPTgTrBa_FiuSfORabSzRzM5oEqcm_TW6KdxBn9NDcxce98SGFxTQ2lr_YWDNHyGhLnTf7GNBPYDM-wNfG-IzG32O4B4-2lu6plcsS4gHdQ8wI6QN5N5k5wcfn94z8-nFxt71qb24vr7fnN60VcsjttOkE7RRslONWWuDMdNKNTIreUejc6NQ4Spg6UI6OrB5rJmW7zhjoNlSCOCNfjv_W6D8FUtYLJgvzbDyEkjQXTNJh6JWsqDiiNoaUIkx6H3Ex8VEzqg-69U4_6dYH3Ydm1V23Pj8HlHEB97Lz328Fvh8BqGc-IESdLIK34DBWadoFfDXgH7z6lgw</recordid><startdate>202001</startdate><enddate>202001</enddate><creator>Peña Álvarez, Jaime</creator><creator>Teneb, Jaime</creator><creator>Maldonado, Ismael</creator><creator>Weinberger, Katherine</creator><creator>Rosas, Carlos</creator><creator>Lemus, David</creator><creator>Valck, Carolina</creator><creator>Olivera-Nappa, Álvaro</creator><creator>Asenjo, Juan A.</creator><creator>Ferreira, Arturo</creator><general>Elsevier GmbH</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>202001</creationdate><title>Structural bases that underline Trypanosoma cruzi calreticulin proinfective, antiangiogenic and antitumor properties</title><author>Peña Álvarez, Jaime ; Teneb, Jaime ; Maldonado, Ismael ; Weinberger, Katherine ; Rosas, Carlos ; Lemus, David ; Valck, Carolina ; Olivera-Nappa, Álvaro ; Asenjo, Juan A. ; Ferreira, Arturo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-f643048e68d2c5ce21a45db1537d0e4dbd8bb5ef4e8d0b1171af8c44aae4605e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Angiogenesis Modulating Agents - chemistry</topic><topic>Angiogenesis Modulating Agents - metabolism</topic><topic>Animals</topic><topic>Antineoplastic Agents - chemistry</topic><topic>Antineoplastic Agents - metabolism</topic><topic>C1q</topic><topic>Calreticulin - chemistry</topic><topic>Calreticulin - metabolism</topic><topic>Cells, Cultured</topic><topic>Chagas Disease - immunology</topic><topic>Chagas Disease - parasitology</topic><topic>Chick Embryo</topic><topic>Complement</topic><topic>Complement Activation</topic><topic>Complement C1q - metabolism</topic><topic>Host-Parasite Interactions</topic><topic>Humans</topic><topic>Molecular dynamics</topic><topic>Molecular Dynamics Simulation</topic><topic>Molecular Structure</topic><topic>Protein Interaction Domains and Motifs</topic><topic>Protein modeling</topic><topic>Protozoan Proteins - chemistry</topic><topic>Protozoan Proteins - metabolism</topic><topic>Sequence Alignment</topic><topic>Trypanosoma cruzi - physiology</topic><topic>Trypanosoma cruzi calreticulin</topic><topic>Tumor growth</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peña Álvarez, Jaime</creatorcontrib><creatorcontrib>Teneb, Jaime</creatorcontrib><creatorcontrib>Maldonado, Ismael</creatorcontrib><creatorcontrib>Weinberger, Katherine</creatorcontrib><creatorcontrib>Rosas, Carlos</creatorcontrib><creatorcontrib>Lemus, David</creatorcontrib><creatorcontrib>Valck, Carolina</creatorcontrib><creatorcontrib>Olivera-Nappa, Álvaro</creatorcontrib><creatorcontrib>Asenjo, Juan A.</creatorcontrib><creatorcontrib>Ferreira, Arturo</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Immunobiology (1979)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peña Álvarez, Jaime</au><au>Teneb, Jaime</au><au>Maldonado, Ismael</au><au>Weinberger, Katherine</au><au>Rosas, Carlos</au><au>Lemus, David</au><au>Valck, Carolina</au><au>Olivera-Nappa, Álvaro</au><au>Asenjo, Juan A.</au><au>Ferreira, Arturo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural bases that underline Trypanosoma cruzi calreticulin proinfective, antiangiogenic and antitumor properties</atitle><jtitle>Immunobiology (1979)</jtitle><addtitle>Immunobiology</addtitle><date>2020-01</date><risdate>2020</risdate><volume>225</volume><issue>1</issue><spage>151863</spage><epage>151863</epage><pages>151863-151863</pages><artnum>151863</artnum><issn>0171-2985</issn><eissn>1878-3279</eissn><abstract>Microbes have developed mechanisms to resist the host immune defenses and some elicit antitumor immune responses. About 6 million people are infected with Trypanosoma cruzi, the protozoan agent of Chagas’ disease, the sixth neglected tropical disease worldwide. Eighty years ago, G. Roskin and N. Klyuyeva proposed that T. cruzi infection mediates an anti-cancer activity. This observation has been reproduced by several other laboratories, but no molecular basis has been proposed. We have shown that the highly pleiotropic chaperone calreticulin (TcCalr, formerly known as TcCRT), translocates from the parasite ER to the exterior, where it mediates infection. Similar to its human counterpart HuCALR (formerly known as HuCRT), TcCalr inhibits C1 in its capacity to initiate the classical pathway of complement activation. We have also proposed that TcCalr inhibits angiogenesis and it is a likely mediator of antitumor effects. We have generated several in silico structural TcCalr models to delimit a peptide (VC-TcCalr) at the TcCalr N-domain. Chemically synthesized VC-TcCalr did bind to C1q and was anti-angiogenic in Gallus gallus chorioallantoic membrane assays. These properties were associated with structural features, as determined in silico. VC-TcCalr, a strong dipole, interacts with charged proteins such as collagen-like tails and scavenger receptors. Comparatively, HuCALR has less polarity and spatial stability, probably due to at least substitutions of Gln for Gly, Arg for Lys, Arg for Asp and Ser for Arg that hinder protein-protein interactions. These differences can explain, at least in part, how TcCalr inhibits the complement activation pathway and has higher efficiency as an antiangiogenic and antitumor agent than HuCALR.</abstract><cop>Netherlands</cop><pub>Elsevier GmbH</pub><pmid>31732192</pmid><doi>10.1016/j.imbio.2019.10.012</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0171-2985
ispartof Immunobiology (1979), 2020-01, Vol.225 (1), p.151863-151863, Article 151863
issn 0171-2985
1878-3279
language eng
recordid cdi_proquest_miscellaneous_2315099785
source MEDLINE; Elsevier ScienceDirect Journals
subjects Angiogenesis Modulating Agents - chemistry
Angiogenesis Modulating Agents - metabolism
Animals
Antineoplastic Agents - chemistry
Antineoplastic Agents - metabolism
C1q
Calreticulin - chemistry
Calreticulin - metabolism
Cells, Cultured
Chagas Disease - immunology
Chagas Disease - parasitology
Chick Embryo
Complement
Complement Activation
Complement C1q - metabolism
Host-Parasite Interactions
Humans
Molecular dynamics
Molecular Dynamics Simulation
Molecular Structure
Protein Interaction Domains and Motifs
Protein modeling
Protozoan Proteins - chemistry
Protozoan Proteins - metabolism
Sequence Alignment
Trypanosoma cruzi - physiology
Trypanosoma cruzi calreticulin
Tumor growth
title Structural bases that underline Trypanosoma cruzi calreticulin proinfective, antiangiogenic and antitumor properties
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T21%3A48%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20bases%20that%20underline%20Trypanosoma%20cruzi%20calreticulin%20proinfective,%20antiangiogenic%20and%20antitumor%20properties&rft.jtitle=Immunobiology%20(1979)&rft.au=Pe%C3%B1a%20%C3%81lvarez,%20Jaime&rft.date=2020-01&rft.volume=225&rft.issue=1&rft.spage=151863&rft.epage=151863&rft.pages=151863-151863&rft.artnum=151863&rft.issn=0171-2985&rft.eissn=1878-3279&rft_id=info:doi/10.1016/j.imbio.2019.10.012&rft_dat=%3Cproquest_cross%3E2315099785%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2315099785&rft_id=info:pmid/31732192&rft_els_id=S0171298519303651&rfr_iscdi=true