Engineering Pseudomonas putida KT2440 to convert 2,3-butanediol to mevalonate
•Pseudomonas putida KT2440 can metabolize 2,3-butanediol as a sole carbon source.•2,3-butandiol was converted to mevalonate by engineered P. putida KT2440 successfully.•atoB gene expression and aeration optimization enhanced the mevalonate production. Biological production of 2,3-butanediol (2,3-BDO...
Gespeichert in:
Veröffentlicht in: | Enzyme and microbial technology 2020-01, Vol.132, p.109437-109437, Article 109437 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 109437 |
---|---|
container_issue | |
container_start_page | 109437 |
container_title | Enzyme and microbial technology |
container_volume | 132 |
creator | Yang, Jeongmo Im, Yeongeun Kim, Tae Hwan Lee, Myeong Jun Cho, Sukhyeong Na, Jeong-geol Lee, Jinwon Oh, Byung-keun |
description | •Pseudomonas putida KT2440 can metabolize 2,3-butanediol as a sole carbon source.•2,3-butandiol was converted to mevalonate by engineered P. putida KT2440 successfully.•atoB gene expression and aeration optimization enhanced the mevalonate production.
Biological production of 2,3-butanediol (2,3-BDO), a C4 platform chemical, has been studied recently, but the high cost of separation and purification before chemical conversion is substantial. To overcome this obstacle, we have conducted a study to convert 2,3-BDO to mevalonate, a terpenoid intermediate, using recombinant Pseudomonas putida and this biological process won’t need the separation and purification process of 2,3-BDO. The production of mevalonate when 2,3-BDO was used as a substrate was 6.61 and 8.44 times higher than when glucose and glycerol were used as substrates under the same conditions, respectively. Lower aeration contributed to higher yields of mevalonate in otherwise identical conditions. The maximum mevalonate production on the shaking flask scale was about 2.21 g/L, in this study (product yield was 0.295, 27% of theoretical yield (1.10)). This study was the first successful attempt for mevalonate production by P. putida using 2,3-BDO as the sole carbon source and presented a new metabolic engineering tool and biological process for mevalonate synthesis. |
doi_str_mv | 10.1016/j.enzmictec.2019.109437 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2315086308</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0141022919301759</els_id><sourcerecordid>2315086308</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-dc622056993915440c129920f967df162bbd1d85d78192bf7bfb8c92c3e4ba743</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRS0EoqXwC5AlC1L8SJ14WaHyEEWwKGsrsSeVqyQutlMJvh5XKd2yGunOvfM4CN0QPCWY8PvNFLqf1qgAakoxEVEVGctP0JgUuUixwOIUjTHJSIopFSN04f0G4yhk-ByNGMkZEZyP0duiW5sOwJlunXx46LVtbVf6ZNsHo8vkdUVjJAk2UbbbgQsJvWNp1YeyA21ss--0sCubGApwic7qsvFwdagT9Pm4WD08p8v3p5eH-TJVGS5CqhWnFM-4EEyQWZyvCBWC4lrwXNeE06rSRBcznRdE0KrOq7oqlKCKQVaVecYm6HaYu3X2qwcfZGu8gqaJV9neS8rIDBec4SJa88GqnPXeQS23zrSl-5YEyz1LuZFHlnLPUg4sY_L6sKSvWtDH3B-8aJgPBoiv7gw46ZWBTkUwDlSQ2pp_l_wC_NiIEg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2315086308</pqid></control><display><type>article</type><title>Engineering Pseudomonas putida KT2440 to convert 2,3-butanediol to mevalonate</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Yang, Jeongmo ; Im, Yeongeun ; Kim, Tae Hwan ; Lee, Myeong Jun ; Cho, Sukhyeong ; Na, Jeong-geol ; Lee, Jinwon ; Oh, Byung-keun</creator><creatorcontrib>Yang, Jeongmo ; Im, Yeongeun ; Kim, Tae Hwan ; Lee, Myeong Jun ; Cho, Sukhyeong ; Na, Jeong-geol ; Lee, Jinwon ; Oh, Byung-keun</creatorcontrib><description>•Pseudomonas putida KT2440 can metabolize 2,3-butanediol as a sole carbon source.•2,3-butandiol was converted to mevalonate by engineered P. putida KT2440 successfully.•atoB gene expression and aeration optimization enhanced the mevalonate production.
Biological production of 2,3-butanediol (2,3-BDO), a C4 platform chemical, has been studied recently, but the high cost of separation and purification before chemical conversion is substantial. To overcome this obstacle, we have conducted a study to convert 2,3-BDO to mevalonate, a terpenoid intermediate, using recombinant Pseudomonas putida and this biological process won’t need the separation and purification process of 2,3-BDO. The production of mevalonate when 2,3-BDO was used as a substrate was 6.61 and 8.44 times higher than when glucose and glycerol were used as substrates under the same conditions, respectively. Lower aeration contributed to higher yields of mevalonate in otherwise identical conditions. The maximum mevalonate production on the shaking flask scale was about 2.21 g/L, in this study (product yield was 0.295, 27% of theoretical yield (1.10)). This study was the first successful attempt for mevalonate production by P. putida using 2,3-BDO as the sole carbon source and presented a new metabolic engineering tool and biological process for mevalonate synthesis.</description><identifier>ISSN: 0141-0229</identifier><identifier>EISSN: 1879-0909</identifier><identifier>DOI: 10.1016/j.enzmictec.2019.109437</identifier><identifier>PMID: 31731966</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>2,3-butanediol ; Butylene Glycols - metabolism ; Carbon - metabolism ; Glucose - metabolism ; Glycerol - metabolism ; Metabolic Engineering ; Metabolic Networks and Pathways ; Mevalonate ; Mevalonic Acid - metabolism ; MVA pathway ; Pseudomonas putida ; Pseudomonas putida - genetics ; Pseudomonas putida - metabolism</subject><ispartof>Enzyme and microbial technology, 2020-01, Vol.132, p.109437-109437, Article 109437</ispartof><rights>2019 Elsevier Inc.</rights><rights>Copyright © 2019 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-dc622056993915440c129920f967df162bbd1d85d78192bf7bfb8c92c3e4ba743</citedby><cites>FETCH-LOGICAL-c408t-dc622056993915440c129920f967df162bbd1d85d78192bf7bfb8c92c3e4ba743</cites><orcidid>0000-0002-3268-4705</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.enzmictec.2019.109437$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31731966$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Jeongmo</creatorcontrib><creatorcontrib>Im, Yeongeun</creatorcontrib><creatorcontrib>Kim, Tae Hwan</creatorcontrib><creatorcontrib>Lee, Myeong Jun</creatorcontrib><creatorcontrib>Cho, Sukhyeong</creatorcontrib><creatorcontrib>Na, Jeong-geol</creatorcontrib><creatorcontrib>Lee, Jinwon</creatorcontrib><creatorcontrib>Oh, Byung-keun</creatorcontrib><title>Engineering Pseudomonas putida KT2440 to convert 2,3-butanediol to mevalonate</title><title>Enzyme and microbial technology</title><addtitle>Enzyme Microb Technol</addtitle><description>•Pseudomonas putida KT2440 can metabolize 2,3-butanediol as a sole carbon source.•2,3-butandiol was converted to mevalonate by engineered P. putida KT2440 successfully.•atoB gene expression and aeration optimization enhanced the mevalonate production.
Biological production of 2,3-butanediol (2,3-BDO), a C4 platform chemical, has been studied recently, but the high cost of separation and purification before chemical conversion is substantial. To overcome this obstacle, we have conducted a study to convert 2,3-BDO to mevalonate, a terpenoid intermediate, using recombinant Pseudomonas putida and this biological process won’t need the separation and purification process of 2,3-BDO. The production of mevalonate when 2,3-BDO was used as a substrate was 6.61 and 8.44 times higher than when glucose and glycerol were used as substrates under the same conditions, respectively. Lower aeration contributed to higher yields of mevalonate in otherwise identical conditions. The maximum mevalonate production on the shaking flask scale was about 2.21 g/L, in this study (product yield was 0.295, 27% of theoretical yield (1.10)). This study was the first successful attempt for mevalonate production by P. putida using 2,3-BDO as the sole carbon source and presented a new metabolic engineering tool and biological process for mevalonate synthesis.</description><subject>2,3-butanediol</subject><subject>Butylene Glycols - metabolism</subject><subject>Carbon - metabolism</subject><subject>Glucose - metabolism</subject><subject>Glycerol - metabolism</subject><subject>Metabolic Engineering</subject><subject>Metabolic Networks and Pathways</subject><subject>Mevalonate</subject><subject>Mevalonic Acid - metabolism</subject><subject>MVA pathway</subject><subject>Pseudomonas putida</subject><subject>Pseudomonas putida - genetics</subject><subject>Pseudomonas putida - metabolism</subject><issn>0141-0229</issn><issn>1879-0909</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkMtOwzAQRS0EoqXwC5AlC1L8SJ14WaHyEEWwKGsrsSeVqyQutlMJvh5XKd2yGunOvfM4CN0QPCWY8PvNFLqf1qgAakoxEVEVGctP0JgUuUixwOIUjTHJSIopFSN04f0G4yhk-ByNGMkZEZyP0duiW5sOwJlunXx46LVtbVf6ZNsHo8vkdUVjJAk2UbbbgQsJvWNp1YeyA21ss--0sCubGApwic7qsvFwdagT9Pm4WD08p8v3p5eH-TJVGS5CqhWnFM-4EEyQWZyvCBWC4lrwXNeE06rSRBcznRdE0KrOq7oqlKCKQVaVecYm6HaYu3X2qwcfZGu8gqaJV9neS8rIDBec4SJa88GqnPXeQS23zrSl-5YEyz1LuZFHlnLPUg4sY_L6sKSvWtDH3B-8aJgPBoiv7gw46ZWBTkUwDlSQ2pp_l_wC_NiIEg</recordid><startdate>202001</startdate><enddate>202001</enddate><creator>Yang, Jeongmo</creator><creator>Im, Yeongeun</creator><creator>Kim, Tae Hwan</creator><creator>Lee, Myeong Jun</creator><creator>Cho, Sukhyeong</creator><creator>Na, Jeong-geol</creator><creator>Lee, Jinwon</creator><creator>Oh, Byung-keun</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3268-4705</orcidid></search><sort><creationdate>202001</creationdate><title>Engineering Pseudomonas putida KT2440 to convert 2,3-butanediol to mevalonate</title><author>Yang, Jeongmo ; Im, Yeongeun ; Kim, Tae Hwan ; Lee, Myeong Jun ; Cho, Sukhyeong ; Na, Jeong-geol ; Lee, Jinwon ; Oh, Byung-keun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-dc622056993915440c129920f967df162bbd1d85d78192bf7bfb8c92c3e4ba743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>2,3-butanediol</topic><topic>Butylene Glycols - metabolism</topic><topic>Carbon - metabolism</topic><topic>Glucose - metabolism</topic><topic>Glycerol - metabolism</topic><topic>Metabolic Engineering</topic><topic>Metabolic Networks and Pathways</topic><topic>Mevalonate</topic><topic>Mevalonic Acid - metabolism</topic><topic>MVA pathway</topic><topic>Pseudomonas putida</topic><topic>Pseudomonas putida - genetics</topic><topic>Pseudomonas putida - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Jeongmo</creatorcontrib><creatorcontrib>Im, Yeongeun</creatorcontrib><creatorcontrib>Kim, Tae Hwan</creatorcontrib><creatorcontrib>Lee, Myeong Jun</creatorcontrib><creatorcontrib>Cho, Sukhyeong</creatorcontrib><creatorcontrib>Na, Jeong-geol</creatorcontrib><creatorcontrib>Lee, Jinwon</creatorcontrib><creatorcontrib>Oh, Byung-keun</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Enzyme and microbial technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Jeongmo</au><au>Im, Yeongeun</au><au>Kim, Tae Hwan</au><au>Lee, Myeong Jun</au><au>Cho, Sukhyeong</au><au>Na, Jeong-geol</au><au>Lee, Jinwon</au><au>Oh, Byung-keun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Engineering Pseudomonas putida KT2440 to convert 2,3-butanediol to mevalonate</atitle><jtitle>Enzyme and microbial technology</jtitle><addtitle>Enzyme Microb Technol</addtitle><date>2020-01</date><risdate>2020</risdate><volume>132</volume><spage>109437</spage><epage>109437</epage><pages>109437-109437</pages><artnum>109437</artnum><issn>0141-0229</issn><eissn>1879-0909</eissn><abstract>•Pseudomonas putida KT2440 can metabolize 2,3-butanediol as a sole carbon source.•2,3-butandiol was converted to mevalonate by engineered P. putida KT2440 successfully.•atoB gene expression and aeration optimization enhanced the mevalonate production.
Biological production of 2,3-butanediol (2,3-BDO), a C4 platform chemical, has been studied recently, but the high cost of separation and purification before chemical conversion is substantial. To overcome this obstacle, we have conducted a study to convert 2,3-BDO to mevalonate, a terpenoid intermediate, using recombinant Pseudomonas putida and this biological process won’t need the separation and purification process of 2,3-BDO. The production of mevalonate when 2,3-BDO was used as a substrate was 6.61 and 8.44 times higher than when glucose and glycerol were used as substrates under the same conditions, respectively. Lower aeration contributed to higher yields of mevalonate in otherwise identical conditions. The maximum mevalonate production on the shaking flask scale was about 2.21 g/L, in this study (product yield was 0.295, 27% of theoretical yield (1.10)). This study was the first successful attempt for mevalonate production by P. putida using 2,3-BDO as the sole carbon source and presented a new metabolic engineering tool and biological process for mevalonate synthesis.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>31731966</pmid><doi>10.1016/j.enzmictec.2019.109437</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-3268-4705</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0141-0229 |
ispartof | Enzyme and microbial technology, 2020-01, Vol.132, p.109437-109437, Article 109437 |
issn | 0141-0229 1879-0909 |
language | eng |
recordid | cdi_proquest_miscellaneous_2315086308 |
source | MEDLINE; ScienceDirect Journals (5 years ago - present) |
subjects | 2,3-butanediol Butylene Glycols - metabolism Carbon - metabolism Glucose - metabolism Glycerol - metabolism Metabolic Engineering Metabolic Networks and Pathways Mevalonate Mevalonic Acid - metabolism MVA pathway Pseudomonas putida Pseudomonas putida - genetics Pseudomonas putida - metabolism |
title | Engineering Pseudomonas putida KT2440 to convert 2,3-butanediol to mevalonate |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T16%3A53%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Engineering%20Pseudomonas%20putida%20KT2440%20to%20convert%202,3-butanediol%20to%20mevalonate&rft.jtitle=Enzyme%20and%20microbial%20technology&rft.au=Yang,%20Jeongmo&rft.date=2020-01&rft.volume=132&rft.spage=109437&rft.epage=109437&rft.pages=109437-109437&rft.artnum=109437&rft.issn=0141-0229&rft.eissn=1879-0909&rft_id=info:doi/10.1016/j.enzmictec.2019.109437&rft_dat=%3Cproquest_cross%3E2315086308%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2315086308&rft_id=info:pmid/31731966&rft_els_id=S0141022919301759&rfr_iscdi=true |