Engineering Pseudomonas putida KT2440 to convert 2,3-butanediol to mevalonate

•Pseudomonas putida KT2440 can metabolize 2,3-butanediol as a sole carbon source.•2,3-butandiol was converted to mevalonate by engineered P. putida KT2440 successfully.•atoB gene expression and aeration optimization enhanced the mevalonate production. Biological production of 2,3-butanediol (2,3-BDO...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Enzyme and microbial technology 2020-01, Vol.132, p.109437-109437, Article 109437
Hauptverfasser: Yang, Jeongmo, Im, Yeongeun, Kim, Tae Hwan, Lee, Myeong Jun, Cho, Sukhyeong, Na, Jeong-geol, Lee, Jinwon, Oh, Byung-keun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 109437
container_issue
container_start_page 109437
container_title Enzyme and microbial technology
container_volume 132
creator Yang, Jeongmo
Im, Yeongeun
Kim, Tae Hwan
Lee, Myeong Jun
Cho, Sukhyeong
Na, Jeong-geol
Lee, Jinwon
Oh, Byung-keun
description •Pseudomonas putida KT2440 can metabolize 2,3-butanediol as a sole carbon source.•2,3-butandiol was converted to mevalonate by engineered P. putida KT2440 successfully.•atoB gene expression and aeration optimization enhanced the mevalonate production. Biological production of 2,3-butanediol (2,3-BDO), a C4 platform chemical, has been studied recently, but the high cost of separation and purification before chemical conversion is substantial. To overcome this obstacle, we have conducted a study to convert 2,3-BDO to mevalonate, a terpenoid intermediate, using recombinant Pseudomonas putida and this biological process won’t need the separation and purification process of 2,3-BDO. The production of mevalonate when 2,3-BDO was used as a substrate was 6.61 and 8.44 times higher than when glucose and glycerol were used as substrates under the same conditions, respectively. Lower aeration contributed to higher yields of mevalonate in otherwise identical conditions. The maximum mevalonate production on the shaking flask scale was about 2.21 g/L, in this study (product yield was 0.295, 27% of theoretical yield (1.10)). This study was the first successful attempt for mevalonate production by P. putida using 2,3-BDO as the sole carbon source and presented a new metabolic engineering tool and biological process for mevalonate synthesis.
doi_str_mv 10.1016/j.enzmictec.2019.109437
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2315086308</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0141022919301759</els_id><sourcerecordid>2315086308</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-dc622056993915440c129920f967df162bbd1d85d78192bf7bfb8c92c3e4ba743</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRS0EoqXwC5AlC1L8SJ14WaHyEEWwKGsrsSeVqyQutlMJvh5XKd2yGunOvfM4CN0QPCWY8PvNFLqf1qgAakoxEVEVGctP0JgUuUixwOIUjTHJSIopFSN04f0G4yhk-ByNGMkZEZyP0duiW5sOwJlunXx46LVtbVf6ZNsHo8vkdUVjJAk2UbbbgQsJvWNp1YeyA21ss--0sCubGApwic7qsvFwdagT9Pm4WD08p8v3p5eH-TJVGS5CqhWnFM-4EEyQWZyvCBWC4lrwXNeE06rSRBcznRdE0KrOq7oqlKCKQVaVecYm6HaYu3X2qwcfZGu8gqaJV9neS8rIDBec4SJa88GqnPXeQS23zrSl-5YEyz1LuZFHlnLPUg4sY_L6sKSvWtDH3B-8aJgPBoiv7gw46ZWBTkUwDlSQ2pp_l_wC_NiIEg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2315086308</pqid></control><display><type>article</type><title>Engineering Pseudomonas putida KT2440 to convert 2,3-butanediol to mevalonate</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Yang, Jeongmo ; Im, Yeongeun ; Kim, Tae Hwan ; Lee, Myeong Jun ; Cho, Sukhyeong ; Na, Jeong-geol ; Lee, Jinwon ; Oh, Byung-keun</creator><creatorcontrib>Yang, Jeongmo ; Im, Yeongeun ; Kim, Tae Hwan ; Lee, Myeong Jun ; Cho, Sukhyeong ; Na, Jeong-geol ; Lee, Jinwon ; Oh, Byung-keun</creatorcontrib><description>•Pseudomonas putida KT2440 can metabolize 2,3-butanediol as a sole carbon source.•2,3-butandiol was converted to mevalonate by engineered P. putida KT2440 successfully.•atoB gene expression and aeration optimization enhanced the mevalonate production. Biological production of 2,3-butanediol (2,3-BDO), a C4 platform chemical, has been studied recently, but the high cost of separation and purification before chemical conversion is substantial. To overcome this obstacle, we have conducted a study to convert 2,3-BDO to mevalonate, a terpenoid intermediate, using recombinant Pseudomonas putida and this biological process won’t need the separation and purification process of 2,3-BDO. The production of mevalonate when 2,3-BDO was used as a substrate was 6.61 and 8.44 times higher than when glucose and glycerol were used as substrates under the same conditions, respectively. Lower aeration contributed to higher yields of mevalonate in otherwise identical conditions. The maximum mevalonate production on the shaking flask scale was about 2.21 g/L, in this study (product yield was 0.295, 27% of theoretical yield (1.10)). This study was the first successful attempt for mevalonate production by P. putida using 2,3-BDO as the sole carbon source and presented a new metabolic engineering tool and biological process for mevalonate synthesis.</description><identifier>ISSN: 0141-0229</identifier><identifier>EISSN: 1879-0909</identifier><identifier>DOI: 10.1016/j.enzmictec.2019.109437</identifier><identifier>PMID: 31731966</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>2,3-butanediol ; Butylene Glycols - metabolism ; Carbon - metabolism ; Glucose - metabolism ; Glycerol - metabolism ; Metabolic Engineering ; Metabolic Networks and Pathways ; Mevalonate ; Mevalonic Acid - metabolism ; MVA pathway ; Pseudomonas putida ; Pseudomonas putida - genetics ; Pseudomonas putida - metabolism</subject><ispartof>Enzyme and microbial technology, 2020-01, Vol.132, p.109437-109437, Article 109437</ispartof><rights>2019 Elsevier Inc.</rights><rights>Copyright © 2019 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-dc622056993915440c129920f967df162bbd1d85d78192bf7bfb8c92c3e4ba743</citedby><cites>FETCH-LOGICAL-c408t-dc622056993915440c129920f967df162bbd1d85d78192bf7bfb8c92c3e4ba743</cites><orcidid>0000-0002-3268-4705</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.enzmictec.2019.109437$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31731966$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Jeongmo</creatorcontrib><creatorcontrib>Im, Yeongeun</creatorcontrib><creatorcontrib>Kim, Tae Hwan</creatorcontrib><creatorcontrib>Lee, Myeong Jun</creatorcontrib><creatorcontrib>Cho, Sukhyeong</creatorcontrib><creatorcontrib>Na, Jeong-geol</creatorcontrib><creatorcontrib>Lee, Jinwon</creatorcontrib><creatorcontrib>Oh, Byung-keun</creatorcontrib><title>Engineering Pseudomonas putida KT2440 to convert 2,3-butanediol to mevalonate</title><title>Enzyme and microbial technology</title><addtitle>Enzyme Microb Technol</addtitle><description>•Pseudomonas putida KT2440 can metabolize 2,3-butanediol as a sole carbon source.•2,3-butandiol was converted to mevalonate by engineered P. putida KT2440 successfully.•atoB gene expression and aeration optimization enhanced the mevalonate production. Biological production of 2,3-butanediol (2,3-BDO), a C4 platform chemical, has been studied recently, but the high cost of separation and purification before chemical conversion is substantial. To overcome this obstacle, we have conducted a study to convert 2,3-BDO to mevalonate, a terpenoid intermediate, using recombinant Pseudomonas putida and this biological process won’t need the separation and purification process of 2,3-BDO. The production of mevalonate when 2,3-BDO was used as a substrate was 6.61 and 8.44 times higher than when glucose and glycerol were used as substrates under the same conditions, respectively. Lower aeration contributed to higher yields of mevalonate in otherwise identical conditions. The maximum mevalonate production on the shaking flask scale was about 2.21 g/L, in this study (product yield was 0.295, 27% of theoretical yield (1.10)). This study was the first successful attempt for mevalonate production by P. putida using 2,3-BDO as the sole carbon source and presented a new metabolic engineering tool and biological process for mevalonate synthesis.</description><subject>2,3-butanediol</subject><subject>Butylene Glycols - metabolism</subject><subject>Carbon - metabolism</subject><subject>Glucose - metabolism</subject><subject>Glycerol - metabolism</subject><subject>Metabolic Engineering</subject><subject>Metabolic Networks and Pathways</subject><subject>Mevalonate</subject><subject>Mevalonic Acid - metabolism</subject><subject>MVA pathway</subject><subject>Pseudomonas putida</subject><subject>Pseudomonas putida - genetics</subject><subject>Pseudomonas putida - metabolism</subject><issn>0141-0229</issn><issn>1879-0909</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkMtOwzAQRS0EoqXwC5AlC1L8SJ14WaHyEEWwKGsrsSeVqyQutlMJvh5XKd2yGunOvfM4CN0QPCWY8PvNFLqf1qgAakoxEVEVGctP0JgUuUixwOIUjTHJSIopFSN04f0G4yhk-ByNGMkZEZyP0duiW5sOwJlunXx46LVtbVf6ZNsHo8vkdUVjJAk2UbbbgQsJvWNp1YeyA21ss--0sCubGApwic7qsvFwdagT9Pm4WD08p8v3p5eH-TJVGS5CqhWnFM-4EEyQWZyvCBWC4lrwXNeE06rSRBcznRdE0KrOq7oqlKCKQVaVecYm6HaYu3X2qwcfZGu8gqaJV9neS8rIDBec4SJa88GqnPXeQS23zrSl-5YEyz1LuZFHlnLPUg4sY_L6sKSvWtDH3B-8aJgPBoiv7gw46ZWBTkUwDlSQ2pp_l_wC_NiIEg</recordid><startdate>202001</startdate><enddate>202001</enddate><creator>Yang, Jeongmo</creator><creator>Im, Yeongeun</creator><creator>Kim, Tae Hwan</creator><creator>Lee, Myeong Jun</creator><creator>Cho, Sukhyeong</creator><creator>Na, Jeong-geol</creator><creator>Lee, Jinwon</creator><creator>Oh, Byung-keun</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3268-4705</orcidid></search><sort><creationdate>202001</creationdate><title>Engineering Pseudomonas putida KT2440 to convert 2,3-butanediol to mevalonate</title><author>Yang, Jeongmo ; Im, Yeongeun ; Kim, Tae Hwan ; Lee, Myeong Jun ; Cho, Sukhyeong ; Na, Jeong-geol ; Lee, Jinwon ; Oh, Byung-keun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-dc622056993915440c129920f967df162bbd1d85d78192bf7bfb8c92c3e4ba743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>2,3-butanediol</topic><topic>Butylene Glycols - metabolism</topic><topic>Carbon - metabolism</topic><topic>Glucose - metabolism</topic><topic>Glycerol - metabolism</topic><topic>Metabolic Engineering</topic><topic>Metabolic Networks and Pathways</topic><topic>Mevalonate</topic><topic>Mevalonic Acid - metabolism</topic><topic>MVA pathway</topic><topic>Pseudomonas putida</topic><topic>Pseudomonas putida - genetics</topic><topic>Pseudomonas putida - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Jeongmo</creatorcontrib><creatorcontrib>Im, Yeongeun</creatorcontrib><creatorcontrib>Kim, Tae Hwan</creatorcontrib><creatorcontrib>Lee, Myeong Jun</creatorcontrib><creatorcontrib>Cho, Sukhyeong</creatorcontrib><creatorcontrib>Na, Jeong-geol</creatorcontrib><creatorcontrib>Lee, Jinwon</creatorcontrib><creatorcontrib>Oh, Byung-keun</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Enzyme and microbial technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Jeongmo</au><au>Im, Yeongeun</au><au>Kim, Tae Hwan</au><au>Lee, Myeong Jun</au><au>Cho, Sukhyeong</au><au>Na, Jeong-geol</au><au>Lee, Jinwon</au><au>Oh, Byung-keun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Engineering Pseudomonas putida KT2440 to convert 2,3-butanediol to mevalonate</atitle><jtitle>Enzyme and microbial technology</jtitle><addtitle>Enzyme Microb Technol</addtitle><date>2020-01</date><risdate>2020</risdate><volume>132</volume><spage>109437</spage><epage>109437</epage><pages>109437-109437</pages><artnum>109437</artnum><issn>0141-0229</issn><eissn>1879-0909</eissn><abstract>•Pseudomonas putida KT2440 can metabolize 2,3-butanediol as a sole carbon source.•2,3-butandiol was converted to mevalonate by engineered P. putida KT2440 successfully.•atoB gene expression and aeration optimization enhanced the mevalonate production. Biological production of 2,3-butanediol (2,3-BDO), a C4 platform chemical, has been studied recently, but the high cost of separation and purification before chemical conversion is substantial. To overcome this obstacle, we have conducted a study to convert 2,3-BDO to mevalonate, a terpenoid intermediate, using recombinant Pseudomonas putida and this biological process won’t need the separation and purification process of 2,3-BDO. The production of mevalonate when 2,3-BDO was used as a substrate was 6.61 and 8.44 times higher than when glucose and glycerol were used as substrates under the same conditions, respectively. Lower aeration contributed to higher yields of mevalonate in otherwise identical conditions. The maximum mevalonate production on the shaking flask scale was about 2.21 g/L, in this study (product yield was 0.295, 27% of theoretical yield (1.10)). This study was the first successful attempt for mevalonate production by P. putida using 2,3-BDO as the sole carbon source and presented a new metabolic engineering tool and biological process for mevalonate synthesis.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>31731966</pmid><doi>10.1016/j.enzmictec.2019.109437</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-3268-4705</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0141-0229
ispartof Enzyme and microbial technology, 2020-01, Vol.132, p.109437-109437, Article 109437
issn 0141-0229
1879-0909
language eng
recordid cdi_proquest_miscellaneous_2315086308
source MEDLINE; ScienceDirect Journals (5 years ago - present)
subjects 2,3-butanediol
Butylene Glycols - metabolism
Carbon - metabolism
Glucose - metabolism
Glycerol - metabolism
Metabolic Engineering
Metabolic Networks and Pathways
Mevalonate
Mevalonic Acid - metabolism
MVA pathway
Pseudomonas putida
Pseudomonas putida - genetics
Pseudomonas putida - metabolism
title Engineering Pseudomonas putida KT2440 to convert 2,3-butanediol to mevalonate
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T16%3A53%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Engineering%20Pseudomonas%20putida%20KT2440%20to%20convert%202,3-butanediol%20to%20mevalonate&rft.jtitle=Enzyme%20and%20microbial%20technology&rft.au=Yang,%20Jeongmo&rft.date=2020-01&rft.volume=132&rft.spage=109437&rft.epage=109437&rft.pages=109437-109437&rft.artnum=109437&rft.issn=0141-0229&rft.eissn=1879-0909&rft_id=info:doi/10.1016/j.enzmictec.2019.109437&rft_dat=%3Cproquest_cross%3E2315086308%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2315086308&rft_id=info:pmid/31731966&rft_els_id=S0141022919301759&rfr_iscdi=true