Understanding the Solvent Contribution to Chemical Reaction Barriers

Absolute rate theories attempt to predict the rate constants of reactions from basic principles and independent data. For the contribution of solvent to a reaction rate constant, this requires connecting absolute rate data to fundamental solvent properties such as dielectric constant and refractive...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2019-12, Vol.123 (49), p.10490-10499
Hauptverfasser: Morris, William, Lorance, Edward D, Gould, Ian R
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10499
container_issue 49
container_start_page 10490
container_title The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory
container_volume 123
creator Morris, William
Lorance, Edward D
Gould, Ian R
description Absolute rate theories attempt to predict the rate constants of reactions from basic principles and independent data. For the contribution of solvent to a reaction rate constant, this requires connecting absolute rate data to fundamental solvent properties such as dielectric constant and refractive index. We have explored this connection for the unimolecular fragmentation reaction of a pinacol radical cation. The rate constants for fragmentation were measured as a function of temperature in 12 different solvents with dielectric constants from 4.7 to 36.2, and the free energies of activation for bond fragmentation in each solvent determined using transition state theory. Using the solvent effects on electron-transfer reactions as a starting point, Marcus theory was used to model the solvent effect on the reaction activation energies. The solvent contribution to both the activation free energy and the overall reaction energy is best described using the Born model rather than the Pekar solvation model. The solvent reorganization energies for bond fragmentation are substantially larger than solvent reorganization energies for electron transfer, presumably because of the requirement to translate the solvent molecules in the course of bond breaking.
doi_str_mv 10.1021/acs.jpca.9b06310
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2314572996</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2314572996</sourcerecordid><originalsourceid>FETCH-LOGICAL-a336t-e8d87ba3173e63ff36d29e0988957ebde215b928d39d84f2269e28e35cc28fa33</originalsourceid><addsrcrecordid>eNp1kElPwzAQhS0EoqVw54Ry5ECKl8SxjxBWqRIS0LPlxBOaKnWK7SDx73EXuHGa0ei9NzMfQucETwmm5FrXfrpc13oqK8wZwQdoTHKK05yS_DD2WMg050yO0In3S4wxYTQ7RiNGCpoJjsfobm4NOB-0Na39SMICkre--wIbkrK3wbXVENreJqFPygWs2lp3ySvoeju81c610X2KjhrdeTjb1wmaP9y_l0_p7OXxubyZpZoxHlIQRhSVjssZcNY0jBsqAUshZF5AZSBeXUkqDJNGZA2lXAIVwPK6pqKJGRN0uctdu_5zAB_UqvU1dJ220A9eUUayvKBS8ijFO2nteu8dNGrt2pV234pgtWGnIju1Yaf27KLlYp8-VCswf4ZfWFFwtRNsrf3gbHz2_7wfBqx6eA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2314572996</pqid></control><display><type>article</type><title>Understanding the Solvent Contribution to Chemical Reaction Barriers</title><source>American Chemical Society Journals</source><creator>Morris, William ; Lorance, Edward D ; Gould, Ian R</creator><creatorcontrib>Morris, William ; Lorance, Edward D ; Gould, Ian R</creatorcontrib><description>Absolute rate theories attempt to predict the rate constants of reactions from basic principles and independent data. For the contribution of solvent to a reaction rate constant, this requires connecting absolute rate data to fundamental solvent properties such as dielectric constant and refractive index. We have explored this connection for the unimolecular fragmentation reaction of a pinacol radical cation. The rate constants for fragmentation were measured as a function of temperature in 12 different solvents with dielectric constants from 4.7 to 36.2, and the free energies of activation for bond fragmentation in each solvent determined using transition state theory. Using the solvent effects on electron-transfer reactions as a starting point, Marcus theory was used to model the solvent effect on the reaction activation energies. The solvent contribution to both the activation free energy and the overall reaction energy is best described using the Born model rather than the Pekar solvation model. The solvent reorganization energies for bond fragmentation are substantially larger than solvent reorganization energies for electron transfer, presumably because of the requirement to translate the solvent molecules in the course of bond breaking.</description><identifier>ISSN: 1089-5639</identifier><identifier>EISSN: 1520-5215</identifier><identifier>DOI: 10.1021/acs.jpca.9b06310</identifier><identifier>PMID: 31724860</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory, 2019-12, Vol.123 (49), p.10490-10499</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a336t-e8d87ba3173e63ff36d29e0988957ebde215b928d39d84f2269e28e35cc28fa33</citedby><cites>FETCH-LOGICAL-a336t-e8d87ba3173e63ff36d29e0988957ebde215b928d39d84f2269e28e35cc28fa33</cites><orcidid>0000-0003-1726-7724 ; 0000-0002-6301-9556</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpca.9b06310$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpca.9b06310$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31724860$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Morris, William</creatorcontrib><creatorcontrib>Lorance, Edward D</creatorcontrib><creatorcontrib>Gould, Ian R</creatorcontrib><title>Understanding the Solvent Contribution to Chemical Reaction Barriers</title><title>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</title><addtitle>J. Phys. Chem. A</addtitle><description>Absolute rate theories attempt to predict the rate constants of reactions from basic principles and independent data. For the contribution of solvent to a reaction rate constant, this requires connecting absolute rate data to fundamental solvent properties such as dielectric constant and refractive index. We have explored this connection for the unimolecular fragmentation reaction of a pinacol radical cation. The rate constants for fragmentation were measured as a function of temperature in 12 different solvents with dielectric constants from 4.7 to 36.2, and the free energies of activation for bond fragmentation in each solvent determined using transition state theory. Using the solvent effects on electron-transfer reactions as a starting point, Marcus theory was used to model the solvent effect on the reaction activation energies. The solvent contribution to both the activation free energy and the overall reaction energy is best described using the Born model rather than the Pekar solvation model. The solvent reorganization energies for bond fragmentation are substantially larger than solvent reorganization energies for electron transfer, presumably because of the requirement to translate the solvent molecules in the course of bond breaking.</description><issn>1089-5639</issn><issn>1520-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kElPwzAQhS0EoqVw54Ry5ECKl8SxjxBWqRIS0LPlxBOaKnWK7SDx73EXuHGa0ei9NzMfQucETwmm5FrXfrpc13oqK8wZwQdoTHKK05yS_DD2WMg050yO0In3S4wxYTQ7RiNGCpoJjsfobm4NOB-0Na39SMICkre--wIbkrK3wbXVENreJqFPygWs2lp3ySvoeju81c610X2KjhrdeTjb1wmaP9y_l0_p7OXxubyZpZoxHlIQRhSVjssZcNY0jBsqAUshZF5AZSBeXUkqDJNGZA2lXAIVwPK6pqKJGRN0uctdu_5zAB_UqvU1dJ220A9eUUayvKBS8ijFO2nteu8dNGrt2pV234pgtWGnIju1Yaf27KLlYp8-VCswf4ZfWFFwtRNsrf3gbHz2_7wfBqx6eA</recordid><startdate>20191212</startdate><enddate>20191212</enddate><creator>Morris, William</creator><creator>Lorance, Edward D</creator><creator>Gould, Ian R</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1726-7724</orcidid><orcidid>https://orcid.org/0000-0002-6301-9556</orcidid></search><sort><creationdate>20191212</creationdate><title>Understanding the Solvent Contribution to Chemical Reaction Barriers</title><author>Morris, William ; Lorance, Edward D ; Gould, Ian R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a336t-e8d87ba3173e63ff36d29e0988957ebde215b928d39d84f2269e28e35cc28fa33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Morris, William</creatorcontrib><creatorcontrib>Lorance, Edward D</creatorcontrib><creatorcontrib>Gould, Ian R</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Morris, William</au><au>Lorance, Edward D</au><au>Gould, Ian R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Understanding the Solvent Contribution to Chemical Reaction Barriers</atitle><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</jtitle><addtitle>J. Phys. Chem. A</addtitle><date>2019-12-12</date><risdate>2019</risdate><volume>123</volume><issue>49</issue><spage>10490</spage><epage>10499</epage><pages>10490-10499</pages><issn>1089-5639</issn><eissn>1520-5215</eissn><abstract>Absolute rate theories attempt to predict the rate constants of reactions from basic principles and independent data. For the contribution of solvent to a reaction rate constant, this requires connecting absolute rate data to fundamental solvent properties such as dielectric constant and refractive index. We have explored this connection for the unimolecular fragmentation reaction of a pinacol radical cation. The rate constants for fragmentation were measured as a function of temperature in 12 different solvents with dielectric constants from 4.7 to 36.2, and the free energies of activation for bond fragmentation in each solvent determined using transition state theory. Using the solvent effects on electron-transfer reactions as a starting point, Marcus theory was used to model the solvent effect on the reaction activation energies. The solvent contribution to both the activation free energy and the overall reaction energy is best described using the Born model rather than the Pekar solvation model. The solvent reorganization energies for bond fragmentation are substantially larger than solvent reorganization energies for electron transfer, presumably because of the requirement to translate the solvent molecules in the course of bond breaking.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>31724860</pmid><doi>10.1021/acs.jpca.9b06310</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-1726-7724</orcidid><orcidid>https://orcid.org/0000-0002-6301-9556</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1089-5639
ispartof The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory, 2019-12, Vol.123 (49), p.10490-10499
issn 1089-5639
1520-5215
language eng
recordid cdi_proquest_miscellaneous_2314572996
source American Chemical Society Journals
title Understanding the Solvent Contribution to Chemical Reaction Barriers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T09%3A01%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Understanding%20the%20Solvent%20Contribution%20to%20Chemical%20Reaction%20Barriers&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20A,%20Molecules,%20spectroscopy,%20kinetics,%20environment,%20&%20general%20theory&rft.au=Morris,%20William&rft.date=2019-12-12&rft.volume=123&rft.issue=49&rft.spage=10490&rft.epage=10499&rft.pages=10490-10499&rft.issn=1089-5639&rft.eissn=1520-5215&rft_id=info:doi/10.1021/acs.jpca.9b06310&rft_dat=%3Cproquest_cross%3E2314572996%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2314572996&rft_id=info:pmid/31724860&rfr_iscdi=true