Understanding the Solvent Contribution to Chemical Reaction Barriers
Absolute rate theories attempt to predict the rate constants of reactions from basic principles and independent data. For the contribution of solvent to a reaction rate constant, this requires connecting absolute rate data to fundamental solvent properties such as dielectric constant and refractive...
Gespeichert in:
Veröffentlicht in: | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2019-12, Vol.123 (49), p.10490-10499 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10499 |
---|---|
container_issue | 49 |
container_start_page | 10490 |
container_title | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory |
container_volume | 123 |
creator | Morris, William Lorance, Edward D Gould, Ian R |
description | Absolute rate theories attempt to predict the rate constants of reactions from basic principles and independent data. For the contribution of solvent to a reaction rate constant, this requires connecting absolute rate data to fundamental solvent properties such as dielectric constant and refractive index. We have explored this connection for the unimolecular fragmentation reaction of a pinacol radical cation. The rate constants for fragmentation were measured as a function of temperature in 12 different solvents with dielectric constants from 4.7 to 36.2, and the free energies of activation for bond fragmentation in each solvent determined using transition state theory. Using the solvent effects on electron-transfer reactions as a starting point, Marcus theory was used to model the solvent effect on the reaction activation energies. The solvent contribution to both the activation free energy and the overall reaction energy is best described using the Born model rather than the Pekar solvation model. The solvent reorganization energies for bond fragmentation are substantially larger than solvent reorganization energies for electron transfer, presumably because of the requirement to translate the solvent molecules in the course of bond breaking. |
doi_str_mv | 10.1021/acs.jpca.9b06310 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2314572996</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2314572996</sourcerecordid><originalsourceid>FETCH-LOGICAL-a336t-e8d87ba3173e63ff36d29e0988957ebde215b928d39d84f2269e28e35cc28fa33</originalsourceid><addsrcrecordid>eNp1kElPwzAQhS0EoqVw54Ry5ECKl8SxjxBWqRIS0LPlxBOaKnWK7SDx73EXuHGa0ei9NzMfQucETwmm5FrXfrpc13oqK8wZwQdoTHKK05yS_DD2WMg050yO0In3S4wxYTQ7RiNGCpoJjsfobm4NOB-0Na39SMICkre--wIbkrK3wbXVENreJqFPygWs2lp3ySvoeju81c610X2KjhrdeTjb1wmaP9y_l0_p7OXxubyZpZoxHlIQRhSVjssZcNY0jBsqAUshZF5AZSBeXUkqDJNGZA2lXAIVwPK6pqKJGRN0uctdu_5zAB_UqvU1dJ220A9eUUayvKBS8ijFO2nteu8dNGrt2pV234pgtWGnIju1Yaf27KLlYp8-VCswf4ZfWFFwtRNsrf3gbHz2_7wfBqx6eA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2314572996</pqid></control><display><type>article</type><title>Understanding the Solvent Contribution to Chemical Reaction Barriers</title><source>American Chemical Society Journals</source><creator>Morris, William ; Lorance, Edward D ; Gould, Ian R</creator><creatorcontrib>Morris, William ; Lorance, Edward D ; Gould, Ian R</creatorcontrib><description>Absolute rate theories attempt to predict the rate constants of reactions from basic principles and independent data. For the contribution of solvent to a reaction rate constant, this requires connecting absolute rate data to fundamental solvent properties such as dielectric constant and refractive index. We have explored this connection for the unimolecular fragmentation reaction of a pinacol radical cation. The rate constants for fragmentation were measured as a function of temperature in 12 different solvents with dielectric constants from 4.7 to 36.2, and the free energies of activation for bond fragmentation in each solvent determined using transition state theory. Using the solvent effects on electron-transfer reactions as a starting point, Marcus theory was used to model the solvent effect on the reaction activation energies. The solvent contribution to both the activation free energy and the overall reaction energy is best described using the Born model rather than the Pekar solvation model. The solvent reorganization energies for bond fragmentation are substantially larger than solvent reorganization energies for electron transfer, presumably because of the requirement to translate the solvent molecules in the course of bond breaking.</description><identifier>ISSN: 1089-5639</identifier><identifier>EISSN: 1520-5215</identifier><identifier>DOI: 10.1021/acs.jpca.9b06310</identifier><identifier>PMID: 31724860</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory, 2019-12, Vol.123 (49), p.10490-10499</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a336t-e8d87ba3173e63ff36d29e0988957ebde215b928d39d84f2269e28e35cc28fa33</citedby><cites>FETCH-LOGICAL-a336t-e8d87ba3173e63ff36d29e0988957ebde215b928d39d84f2269e28e35cc28fa33</cites><orcidid>0000-0003-1726-7724 ; 0000-0002-6301-9556</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpca.9b06310$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpca.9b06310$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31724860$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Morris, William</creatorcontrib><creatorcontrib>Lorance, Edward D</creatorcontrib><creatorcontrib>Gould, Ian R</creatorcontrib><title>Understanding the Solvent Contribution to Chemical Reaction Barriers</title><title>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory</title><addtitle>J. Phys. Chem. A</addtitle><description>Absolute rate theories attempt to predict the rate constants of reactions from basic principles and independent data. For the contribution of solvent to a reaction rate constant, this requires connecting absolute rate data to fundamental solvent properties such as dielectric constant and refractive index. We have explored this connection for the unimolecular fragmentation reaction of a pinacol radical cation. The rate constants for fragmentation were measured as a function of temperature in 12 different solvents with dielectric constants from 4.7 to 36.2, and the free energies of activation for bond fragmentation in each solvent determined using transition state theory. Using the solvent effects on electron-transfer reactions as a starting point, Marcus theory was used to model the solvent effect on the reaction activation energies. The solvent contribution to both the activation free energy and the overall reaction energy is best described using the Born model rather than the Pekar solvation model. The solvent reorganization energies for bond fragmentation are substantially larger than solvent reorganization energies for electron transfer, presumably because of the requirement to translate the solvent molecules in the course of bond breaking.</description><issn>1089-5639</issn><issn>1520-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kElPwzAQhS0EoqVw54Ry5ECKl8SxjxBWqRIS0LPlxBOaKnWK7SDx73EXuHGa0ei9NzMfQucETwmm5FrXfrpc13oqK8wZwQdoTHKK05yS_DD2WMg050yO0In3S4wxYTQ7RiNGCpoJjsfobm4NOB-0Na39SMICkre--wIbkrK3wbXVENreJqFPygWs2lp3ySvoeju81c610X2KjhrdeTjb1wmaP9y_l0_p7OXxubyZpZoxHlIQRhSVjssZcNY0jBsqAUshZF5AZSBeXUkqDJNGZA2lXAIVwPK6pqKJGRN0uctdu_5zAB_UqvU1dJ220A9eUUayvKBS8ijFO2nteu8dNGrt2pV234pgtWGnIju1Yaf27KLlYp8-VCswf4ZfWFFwtRNsrf3gbHz2_7wfBqx6eA</recordid><startdate>20191212</startdate><enddate>20191212</enddate><creator>Morris, William</creator><creator>Lorance, Edward D</creator><creator>Gould, Ian R</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1726-7724</orcidid><orcidid>https://orcid.org/0000-0002-6301-9556</orcidid></search><sort><creationdate>20191212</creationdate><title>Understanding the Solvent Contribution to Chemical Reaction Barriers</title><author>Morris, William ; Lorance, Edward D ; Gould, Ian R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a336t-e8d87ba3173e63ff36d29e0988957ebde215b928d39d84f2269e28e35cc28fa33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Morris, William</creatorcontrib><creatorcontrib>Lorance, Edward D</creatorcontrib><creatorcontrib>Gould, Ian R</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Morris, William</au><au>Lorance, Edward D</au><au>Gould, Ian R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Understanding the Solvent Contribution to Chemical Reaction Barriers</atitle><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory</jtitle><addtitle>J. Phys. Chem. A</addtitle><date>2019-12-12</date><risdate>2019</risdate><volume>123</volume><issue>49</issue><spage>10490</spage><epage>10499</epage><pages>10490-10499</pages><issn>1089-5639</issn><eissn>1520-5215</eissn><abstract>Absolute rate theories attempt to predict the rate constants of reactions from basic principles and independent data. For the contribution of solvent to a reaction rate constant, this requires connecting absolute rate data to fundamental solvent properties such as dielectric constant and refractive index. We have explored this connection for the unimolecular fragmentation reaction of a pinacol radical cation. The rate constants for fragmentation were measured as a function of temperature in 12 different solvents with dielectric constants from 4.7 to 36.2, and the free energies of activation for bond fragmentation in each solvent determined using transition state theory. Using the solvent effects on electron-transfer reactions as a starting point, Marcus theory was used to model the solvent effect on the reaction activation energies. The solvent contribution to both the activation free energy and the overall reaction energy is best described using the Born model rather than the Pekar solvation model. The solvent reorganization energies for bond fragmentation are substantially larger than solvent reorganization energies for electron transfer, presumably because of the requirement to translate the solvent molecules in the course of bond breaking.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>31724860</pmid><doi>10.1021/acs.jpca.9b06310</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-1726-7724</orcidid><orcidid>https://orcid.org/0000-0002-6301-9556</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1089-5639 |
ispartof | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory, 2019-12, Vol.123 (49), p.10490-10499 |
issn | 1089-5639 1520-5215 |
language | eng |
recordid | cdi_proquest_miscellaneous_2314572996 |
source | American Chemical Society Journals |
title | Understanding the Solvent Contribution to Chemical Reaction Barriers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T09%3A01%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Understanding%20the%20Solvent%20Contribution%20to%20Chemical%20Reaction%20Barriers&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20A,%20Molecules,%20spectroscopy,%20kinetics,%20environment,%20&%20general%20theory&rft.au=Morris,%20William&rft.date=2019-12-12&rft.volume=123&rft.issue=49&rft.spage=10490&rft.epage=10499&rft.pages=10490-10499&rft.issn=1089-5639&rft.eissn=1520-5215&rft_id=info:doi/10.1021/acs.jpca.9b06310&rft_dat=%3Cproquest_cross%3E2314572996%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2314572996&rft_id=info:pmid/31724860&rfr_iscdi=true |