Constructing Spaces and Times for Tactical Analysis in Football
A possible objective in analyzing trajectories of multiple simultaneously moving objects, such as football players during a game, is to extract and understand the general patterns of coordinated movement in different classes of situations as they develop. For achieving this objective, we propose an...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on visualization and computer graphics 2021-04, Vol.27 (4), p.2280-2297 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2297 |
---|---|
container_issue | 4 |
container_start_page | 2280 |
container_title | IEEE transactions on visualization and computer graphics |
container_volume | 27 |
creator | Andrienko, Gennady Andrienko, Natalia Anzer, Gabriel Bauer, Pascal Budziak, Guido Fuchs, Georg Hecker, Dirk Weber, Hendrik Wrobel, Stefan |
description | A possible objective in analyzing trajectories of multiple simultaneously moving objects, such as football players during a game, is to extract and understand the general patterns of coordinated movement in different classes of situations as they develop. For achieving this objective, we propose an approach that includes a combination of query techniques for flexible selection of episodes of situation development, a method for dynamic aggregation of data from selected groups of episodes, and a data structure for representing the aggregates that enables their exploration and use in further analysis. The aggregation, which is meant to abstract general movement patterns, involves construction of new time-homomorphic reference systems owing to iterative application of aggregation operators to a sequence of data selections. As similar patterns may occur at different spatial locations, we also propose constructing new spatial reference systems for aligning and matching movements irrespective of their absolute locations. The approach was tested in application to tracking data from two Bundesliga games of the 2018/2019 season. It enabled detection of interesting and meaningful general patterns of team behaviors in three classes of situations defined by football experts. The experts found the approach and the underlying concepts worth implementing in tools for football analysts. |
doi_str_mv | 10.1109/TVCG.2019.2952129 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_2314567447</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8894420</ieee_id><sourcerecordid>2494389313</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-70900641d59fe0b8622da0aa06654d592cb4e2b85354dd932c565238f61d8c5b3</originalsourceid><addsrcrecordid>eNpdkEtLw0AQgBdRbK3-ABEk4MVL6u7sI7snKcFWoeDB6HXZbDaSkkfNJof-e7e09uBpXt8Mw4fQLcFzQrB6yr7S1RwwUXNQHAioMzQlipEYcyzOQ46TJAYBYoKuvN9gTBiT6hJNKEkAWKKm6DntWj_0ox2q9jv62BrrfGTaIsqqJmRl10eZCUNr6mjRmnrnKx9VbbTsuiE3dX2NLkpTe3dzjDP0uXzJ0td4_b56Sxfr2FIFQ5xghbFgpOCqdDiXAqAw2BgsBGehCTZnDnLJaSgLRcFywYHKUpBCWp7TGXo83N323c_o_KCbyltX16Z13eg1UMK4SBhLAvrwD910Yx9-DxRTjEpFCQ0UOVC277zvXam3fdWYfqcJ1nu7em9X7-3qo92wc3-8POaNK04bfzoDcHcAKufcaSylYgww_QV3xHtl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2494389313</pqid></control><display><type>article</type><title>Constructing Spaces and Times for Tactical Analysis in Football</title><source>IEEE Electronic Library (IEL)</source><creator>Andrienko, Gennady ; Andrienko, Natalia ; Anzer, Gabriel ; Bauer, Pascal ; Budziak, Guido ; Fuchs, Georg ; Hecker, Dirk ; Weber, Hendrik ; Wrobel, Stefan</creator><creatorcontrib>Andrienko, Gennady ; Andrienko, Natalia ; Anzer, Gabriel ; Bauer, Pascal ; Budziak, Guido ; Fuchs, Georg ; Hecker, Dirk ; Weber, Hendrik ; Wrobel, Stefan</creatorcontrib><description>A possible objective in analyzing trajectories of multiple simultaneously moving objects, such as football players during a game, is to extract and understand the general patterns of coordinated movement in different classes of situations as they develop. For achieving this objective, we propose an approach that includes a combination of query techniques for flexible selection of episodes of situation development, a method for dynamic aggregation of data from selected groups of episodes, and a data structure for representing the aggregates that enables their exploration and use in further analysis. The aggregation, which is meant to abstract general movement patterns, involves construction of new time-homomorphic reference systems owing to iterative application of aggregation operators to a sequence of data selections. As similar patterns may occur at different spatial locations, we also propose constructing new spatial reference systems for aligning and matching movements irrespective of their absolute locations. The approach was tested in application to tracking data from two Bundesliga games of the 2018/2019 season. It enabled detection of interesting and meaningful general patterns of team behaviors in three classes of situations defined by football experts. The experts found the approach and the underlying concepts worth implementing in tools for football analysts.</description><identifier>ISSN: 1077-2626</identifier><identifier>EISSN: 1941-0506</identifier><identifier>DOI: 10.1109/TVCG.2019.2952129</identifier><identifier>PMID: 31722479</identifier><identifier>CODEN: ITVGEA</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Agglomeration ; Aggregates ; Companies ; coordinated movement ; Data mining ; Data structures ; Data visualization ; Football ; Games ; movement data ; Moving object recognition ; Reference systems ; soccer ; sport analytics ; Sports ; Trajectory ; Trajectory analysis ; Visual analytics</subject><ispartof>IEEE transactions on visualization and computer graphics, 2021-04, Vol.27 (4), p.2280-2297</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-70900641d59fe0b8622da0aa06654d592cb4e2b85354dd932c565238f61d8c5b3</citedby><cites>FETCH-LOGICAL-c392t-70900641d59fe0b8622da0aa06654d592cb4e2b85354dd932c565238f61d8c5b3</cites><orcidid>0000-0002-8574-6295 ; 0000-0001-8613-6635 ; 0000-0003-3313-1560</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8894420$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8894420$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31722479$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Andrienko, Gennady</creatorcontrib><creatorcontrib>Andrienko, Natalia</creatorcontrib><creatorcontrib>Anzer, Gabriel</creatorcontrib><creatorcontrib>Bauer, Pascal</creatorcontrib><creatorcontrib>Budziak, Guido</creatorcontrib><creatorcontrib>Fuchs, Georg</creatorcontrib><creatorcontrib>Hecker, Dirk</creatorcontrib><creatorcontrib>Weber, Hendrik</creatorcontrib><creatorcontrib>Wrobel, Stefan</creatorcontrib><title>Constructing Spaces and Times for Tactical Analysis in Football</title><title>IEEE transactions on visualization and computer graphics</title><addtitle>TVCG</addtitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><description>A possible objective in analyzing trajectories of multiple simultaneously moving objects, such as football players during a game, is to extract and understand the general patterns of coordinated movement in different classes of situations as they develop. For achieving this objective, we propose an approach that includes a combination of query techniques for flexible selection of episodes of situation development, a method for dynamic aggregation of data from selected groups of episodes, and a data structure for representing the aggregates that enables their exploration and use in further analysis. The aggregation, which is meant to abstract general movement patterns, involves construction of new time-homomorphic reference systems owing to iterative application of aggregation operators to a sequence of data selections. As similar patterns may occur at different spatial locations, we also propose constructing new spatial reference systems for aligning and matching movements irrespective of their absolute locations. The approach was tested in application to tracking data from two Bundesliga games of the 2018/2019 season. It enabled detection of interesting and meaningful general patterns of team behaviors in three classes of situations defined by football experts. The experts found the approach and the underlying concepts worth implementing in tools for football analysts.</description><subject>Agglomeration</subject><subject>Aggregates</subject><subject>Companies</subject><subject>coordinated movement</subject><subject>Data mining</subject><subject>Data structures</subject><subject>Data visualization</subject><subject>Football</subject><subject>Games</subject><subject>movement data</subject><subject>Moving object recognition</subject><subject>Reference systems</subject><subject>soccer</subject><subject>sport analytics</subject><subject>Sports</subject><subject>Trajectory</subject><subject>Trajectory analysis</subject><subject>Visual analytics</subject><issn>1077-2626</issn><issn>1941-0506</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkEtLw0AQgBdRbK3-ABEk4MVL6u7sI7snKcFWoeDB6HXZbDaSkkfNJof-e7e09uBpXt8Mw4fQLcFzQrB6yr7S1RwwUXNQHAioMzQlipEYcyzOQ46TJAYBYoKuvN9gTBiT6hJNKEkAWKKm6DntWj_0ox2q9jv62BrrfGTaIsqqJmRl10eZCUNr6mjRmnrnKx9VbbTsuiE3dX2NLkpTe3dzjDP0uXzJ0td4_b56Sxfr2FIFQ5xghbFgpOCqdDiXAqAw2BgsBGehCTZnDnLJaSgLRcFywYHKUpBCWp7TGXo83N323c_o_KCbyltX16Z13eg1UMK4SBhLAvrwD910Yx9-DxRTjEpFCQ0UOVC277zvXam3fdWYfqcJ1nu7em9X7-3qo92wc3-8POaNK04bfzoDcHcAKufcaSylYgww_QV3xHtl</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Andrienko, Gennady</creator><creator>Andrienko, Natalia</creator><creator>Anzer, Gabriel</creator><creator>Bauer, Pascal</creator><creator>Budziak, Guido</creator><creator>Fuchs, Georg</creator><creator>Hecker, Dirk</creator><creator>Weber, Hendrik</creator><creator>Wrobel, Stefan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8574-6295</orcidid><orcidid>https://orcid.org/0000-0001-8613-6635</orcidid><orcidid>https://orcid.org/0000-0003-3313-1560</orcidid></search><sort><creationdate>20210401</creationdate><title>Constructing Spaces and Times for Tactical Analysis in Football</title><author>Andrienko, Gennady ; Andrienko, Natalia ; Anzer, Gabriel ; Bauer, Pascal ; Budziak, Guido ; Fuchs, Georg ; Hecker, Dirk ; Weber, Hendrik ; Wrobel, Stefan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-70900641d59fe0b8622da0aa06654d592cb4e2b85354dd932c565238f61d8c5b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Agglomeration</topic><topic>Aggregates</topic><topic>Companies</topic><topic>coordinated movement</topic><topic>Data mining</topic><topic>Data structures</topic><topic>Data visualization</topic><topic>Football</topic><topic>Games</topic><topic>movement data</topic><topic>Moving object recognition</topic><topic>Reference systems</topic><topic>soccer</topic><topic>sport analytics</topic><topic>Sports</topic><topic>Trajectory</topic><topic>Trajectory analysis</topic><topic>Visual analytics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Andrienko, Gennady</creatorcontrib><creatorcontrib>Andrienko, Natalia</creatorcontrib><creatorcontrib>Anzer, Gabriel</creatorcontrib><creatorcontrib>Bauer, Pascal</creatorcontrib><creatorcontrib>Budziak, Guido</creatorcontrib><creatorcontrib>Fuchs, Georg</creatorcontrib><creatorcontrib>Hecker, Dirk</creatorcontrib><creatorcontrib>Weber, Hendrik</creatorcontrib><creatorcontrib>Wrobel, Stefan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on visualization and computer graphics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Andrienko, Gennady</au><au>Andrienko, Natalia</au><au>Anzer, Gabriel</au><au>Bauer, Pascal</au><au>Budziak, Guido</au><au>Fuchs, Georg</au><au>Hecker, Dirk</au><au>Weber, Hendrik</au><au>Wrobel, Stefan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Constructing Spaces and Times for Tactical Analysis in Football</atitle><jtitle>IEEE transactions on visualization and computer graphics</jtitle><stitle>TVCG</stitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><date>2021-04-01</date><risdate>2021</risdate><volume>27</volume><issue>4</issue><spage>2280</spage><epage>2297</epage><pages>2280-2297</pages><issn>1077-2626</issn><eissn>1941-0506</eissn><coden>ITVGEA</coden><abstract>A possible objective in analyzing trajectories of multiple simultaneously moving objects, such as football players during a game, is to extract and understand the general patterns of coordinated movement in different classes of situations as they develop. For achieving this objective, we propose an approach that includes a combination of query techniques for flexible selection of episodes of situation development, a method for dynamic aggregation of data from selected groups of episodes, and a data structure for representing the aggregates that enables their exploration and use in further analysis. The aggregation, which is meant to abstract general movement patterns, involves construction of new time-homomorphic reference systems owing to iterative application of aggregation operators to a sequence of data selections. As similar patterns may occur at different spatial locations, we also propose constructing new spatial reference systems for aligning and matching movements irrespective of their absolute locations. The approach was tested in application to tracking data from two Bundesliga games of the 2018/2019 season. It enabled detection of interesting and meaningful general patterns of team behaviors in three classes of situations defined by football experts. The experts found the approach and the underlying concepts worth implementing in tools for football analysts.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>31722479</pmid><doi>10.1109/TVCG.2019.2952129</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-8574-6295</orcidid><orcidid>https://orcid.org/0000-0001-8613-6635</orcidid><orcidid>https://orcid.org/0000-0003-3313-1560</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1077-2626 |
ispartof | IEEE transactions on visualization and computer graphics, 2021-04, Vol.27 (4), p.2280-2297 |
issn | 1077-2626 1941-0506 |
language | eng |
recordid | cdi_proquest_miscellaneous_2314567447 |
source | IEEE Electronic Library (IEL) |
subjects | Agglomeration Aggregates Companies coordinated movement Data mining Data structures Data visualization Football Games movement data Moving object recognition Reference systems soccer sport analytics Sports Trajectory Trajectory analysis Visual analytics |
title | Constructing Spaces and Times for Tactical Analysis in Football |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T17%3A57%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Constructing%20Spaces%20and%20Times%20for%20Tactical%20Analysis%20in%20Football&rft.jtitle=IEEE%20transactions%20on%20visualization%20and%20computer%20graphics&rft.au=Andrienko,%20Gennady&rft.date=2021-04-01&rft.volume=27&rft.issue=4&rft.spage=2280&rft.epage=2297&rft.pages=2280-2297&rft.issn=1077-2626&rft.eissn=1941-0506&rft.coden=ITVGEA&rft_id=info:doi/10.1109/TVCG.2019.2952129&rft_dat=%3Cproquest_RIE%3E2494389313%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2494389313&rft_id=info:pmid/31722479&rft_ieee_id=8894420&rfr_iscdi=true |