Tumor‐Targeted Drug and CpG Delivery System for Phototherapy and Docetaxel‐Enhanced Immunotherapy with Polarization toward M1‐Type Macrophages on Triple Negative Breast Cancers
Cancer immunotherapy has achieved promising clinical responses in recent years owing to the potential of controlling metastatic disease. However, there is a limited research to prove the superior therapeutic efficacy of immunotherapy on breast cancer compared with melanoma and non‐small‐cell lung ca...
Gespeichert in:
Veröffentlicht in: | Advanced materials (Weinheim) 2019-12, Vol.31 (52), p.e1904997-n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 52 |
container_start_page | e1904997 |
container_title | Advanced materials (Weinheim) |
container_volume | 31 |
creator | Chen, Lv Zhou, Lulu Wang, Chunhui Han, Yi Lu, Yonglin Liu, Jie Hu, Xiaochun Yao, Tianming Lin, Yun Liang, Shujing Shi, Shuo Dong, Chunyan |
description | Cancer immunotherapy has achieved promising clinical responses in recent years owing to the potential of controlling metastatic disease. However, there is a limited research to prove the superior therapeutic efficacy of immunotherapy on breast cancer compared with melanoma and non‐small‐cell lung cancer because of its limited expression of PD‐L1, low infiltration of cytotoxic T lymphocytes (CTLs), and high level of myeloid‐derived suppressor cells (MDSCs). Herein, a multifunctional nanoplatform (FA‐CuS/DTX@PEI‐PpIX‐CpG nanocomposites, denoted as FA‐CD@PP‐CpG) for synergistic phototherapy (photodynamic therapy (PDT), photothermal therapy (PTT) included) and docetaxel (DTX)‐enhanced immunotherapy is successfully developed. The nanocomposites exhibit excellent PDT efficacy and photothermal conversion capability under 650 and 808 nm irradiation, respectively. More significantly, FA‐CD@PP‐CpG with no obvious side effects can remarkably inhibit the tumor growth in vivo based on a 4T1‐tumor‐bearing mice modal. A low dosage of loaded DTX in FA‐CD@PP‐CpG can promote infiltration of CTLs to improve efficacy of anti‐PD‐L1 antibody (aPD‐L1), suppress MDSCs, and effectively polarize MDSCs toward M1 phenotype to reduce tumor burden, further to enhance the antitumor efficacy. Taken together, FA‐CD@PP‐CpG nanocomposites offer an efficient synergistic therapeutic modality in docetaxel‐enhanced immunotherapy for clinical application of breast cancer.
A multifunctional nanoplatform (FA‐CuS/DTX@PEI‐PpIX‐CpG, denoted as FA‐CD@PP‐CpG) for photodynamic therapy, photothermal therapy, and docetaxel‐enhanced immunotherapy is developed. FA‐CD@PP‐CpG with no obvious side effects can inhibit tumor growth through promoting infiltration of cytotoxic T lymphocytes to improve efficacy of anti‐programmed cell death‐ligand 1, and polarizing myeloid‐derived suppressor cells toward M1 phenotype. The FA‐CD@PP‐CpG nanocomposite offers an efficient synergistic therapeutic modality. |
doi_str_mv | 10.1002/adma.201904997 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2314256849</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2329678280</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3737-94bb847b3c709166965e7699f01bf9f24dc5c18f584ec59785704324fd999e443</originalsourceid><addsrcrecordid>eNqF0cFu0zAYwHELgVgZXDkiS1y4pNiOE-c7lnaMSStMopwjJ_nSZkriYDsr4cQj8DQ8EE-CS0eRuHDywT__besj5Dlnc86YeK2rTs8F48AkgHpAZjwRPJIMkodkxiBOIkhldkaeOHfLGIOUpY_JWcyV4HHMZ-THZuyM_fnt-0bbLXqs6MqOW6r7ii6HS7rCtrlDO9GPk_PY0dpYerMz3vgdWj1Mv-HKlOj1F2xD5qLf6b4MmauuG_sT2zd-R29Mq23zVfvG9NSbvbYVXfPD3dOAdK1La4ad3qKjYX9jm6FF-h63wd8hfWNRO0-Xh7p1T8mjWrcOn92v5-TT24vN8l10_eHyarm4jspYxSoCWRSZVEVcKgY8TSFNUKUANeNFDbWQVZmUPKuTTGKZgMoSxWQsZF0BAEoZn5NXx-5gzecRnc-7xpXYtrpHM7pcxFyKJM0kBPryH3prRtuH1wUlIFWZyFhQ86MKn3XOYp0Ptum0nXLO8sNE88NE89NEw4EX99mx6LA68T8jDACOYN-0OP0nly9W68Xf-C_o0bHo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2329678280</pqid></control><display><type>article</type><title>Tumor‐Targeted Drug and CpG Delivery System for Phototherapy and Docetaxel‐Enhanced Immunotherapy with Polarization toward M1‐Type Macrophages on Triple Negative Breast Cancers</title><source>MEDLINE</source><source>Wiley Online Library All Journals</source><creator>Chen, Lv ; Zhou, Lulu ; Wang, Chunhui ; Han, Yi ; Lu, Yonglin ; Liu, Jie ; Hu, Xiaochun ; Yao, Tianming ; Lin, Yun ; Liang, Shujing ; Shi, Shuo ; Dong, Chunyan</creator><creatorcontrib>Chen, Lv ; Zhou, Lulu ; Wang, Chunhui ; Han, Yi ; Lu, Yonglin ; Liu, Jie ; Hu, Xiaochun ; Yao, Tianming ; Lin, Yun ; Liang, Shujing ; Shi, Shuo ; Dong, Chunyan</creatorcontrib><description>Cancer immunotherapy has achieved promising clinical responses in recent years owing to the potential of controlling metastatic disease. However, there is a limited research to prove the superior therapeutic efficacy of immunotherapy on breast cancer compared with melanoma and non‐small‐cell lung cancer because of its limited expression of PD‐L1, low infiltration of cytotoxic T lymphocytes (CTLs), and high level of myeloid‐derived suppressor cells (MDSCs). Herein, a multifunctional nanoplatform (FA‐CuS/DTX@PEI‐PpIX‐CpG nanocomposites, denoted as FA‐CD@PP‐CpG) for synergistic phototherapy (photodynamic therapy (PDT), photothermal therapy (PTT) included) and docetaxel (DTX)‐enhanced immunotherapy is successfully developed. The nanocomposites exhibit excellent PDT efficacy and photothermal conversion capability under 650 and 808 nm irradiation, respectively. More significantly, FA‐CD@PP‐CpG with no obvious side effects can remarkably inhibit the tumor growth in vivo based on a 4T1‐tumor‐bearing mice modal. A low dosage of loaded DTX in FA‐CD@PP‐CpG can promote infiltration of CTLs to improve efficacy of anti‐PD‐L1 antibody (aPD‐L1), suppress MDSCs, and effectively polarize MDSCs toward M1 phenotype to reduce tumor burden, further to enhance the antitumor efficacy. Taken together, FA‐CD@PP‐CpG nanocomposites offer an efficient synergistic therapeutic modality in docetaxel‐enhanced immunotherapy for clinical application of breast cancer.
A multifunctional nanoplatform (FA‐CuS/DTX@PEI‐PpIX‐CpG, denoted as FA‐CD@PP‐CpG) for photodynamic therapy, photothermal therapy, and docetaxel‐enhanced immunotherapy is developed. FA‐CD@PP‐CpG with no obvious side effects can inhibit tumor growth through promoting infiltration of cytotoxic T lymphocytes to improve efficacy of anti‐programmed cell death‐ligand 1, and polarizing myeloid‐derived suppressor cells toward M1 phenotype. The FA‐CD@PP‐CpG nanocomposite offers an efficient synergistic therapeutic modality.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.201904997</identifier><identifier>PMID: 31721331</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Animals ; Antibodies ; Antibodies, Monoclonal, Humanized - chemistry ; Antibodies, Monoclonal, Humanized - therapeutic use ; Anticancer properties ; Breast cancer ; Cell Line, Tumor ; Cell Survival - drug effects ; Copper - chemistry ; Copper sulfides ; CpG ; Disease control ; docetaxel ; Docetaxel - chemistry ; Docetaxel - pharmacology ; Docetaxel - therapeutic use ; Drug Carriers - chemistry ; Drug delivery systems ; Folic Acid - chemistry ; Humans ; Immunotherapy ; Infiltration ; Lasers ; Light therapy ; Lymphocytes ; Macrophages ; Mice ; Nanocomposites ; Nanocomposites - chemistry ; Oligonucleotides - chemistry ; PD‐L1/anti PD‐L1 ; Photodynamic therapy ; Phototherapy ; Photothermal conversion ; Polyethyleneimine - chemistry ; Protoporphyrins - chemistry ; Reactive Oxygen Species - metabolism ; Side effects ; T-Lymphocytes, Cytotoxic - cytology ; T-Lymphocytes, Cytotoxic - immunology ; T-Lymphocytes, Cytotoxic - metabolism ; Triple Negative Breast Neoplasms - metabolism ; Triple Negative Breast Neoplasms - pathology ; Triple Negative Breast Neoplasms - therapy</subject><ispartof>Advanced materials (Weinheim), 2019-12, Vol.31 (52), p.e1904997-n/a</ispartof><rights>2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3737-94bb847b3c709166965e7699f01bf9f24dc5c18f584ec59785704324fd999e443</citedby><cites>FETCH-LOGICAL-c3737-94bb847b3c709166965e7699f01bf9f24dc5c18f584ec59785704324fd999e443</cites><orcidid>0000-0003-4387-3445</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.201904997$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.201904997$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31721331$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Lv</creatorcontrib><creatorcontrib>Zhou, Lulu</creatorcontrib><creatorcontrib>Wang, Chunhui</creatorcontrib><creatorcontrib>Han, Yi</creatorcontrib><creatorcontrib>Lu, Yonglin</creatorcontrib><creatorcontrib>Liu, Jie</creatorcontrib><creatorcontrib>Hu, Xiaochun</creatorcontrib><creatorcontrib>Yao, Tianming</creatorcontrib><creatorcontrib>Lin, Yun</creatorcontrib><creatorcontrib>Liang, Shujing</creatorcontrib><creatorcontrib>Shi, Shuo</creatorcontrib><creatorcontrib>Dong, Chunyan</creatorcontrib><title>Tumor‐Targeted Drug and CpG Delivery System for Phototherapy and Docetaxel‐Enhanced Immunotherapy with Polarization toward M1‐Type Macrophages on Triple Negative Breast Cancers</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Cancer immunotherapy has achieved promising clinical responses in recent years owing to the potential of controlling metastatic disease. However, there is a limited research to prove the superior therapeutic efficacy of immunotherapy on breast cancer compared with melanoma and non‐small‐cell lung cancer because of its limited expression of PD‐L1, low infiltration of cytotoxic T lymphocytes (CTLs), and high level of myeloid‐derived suppressor cells (MDSCs). Herein, a multifunctional nanoplatform (FA‐CuS/DTX@PEI‐PpIX‐CpG nanocomposites, denoted as FA‐CD@PP‐CpG) for synergistic phototherapy (photodynamic therapy (PDT), photothermal therapy (PTT) included) and docetaxel (DTX)‐enhanced immunotherapy is successfully developed. The nanocomposites exhibit excellent PDT efficacy and photothermal conversion capability under 650 and 808 nm irradiation, respectively. More significantly, FA‐CD@PP‐CpG with no obvious side effects can remarkably inhibit the tumor growth in vivo based on a 4T1‐tumor‐bearing mice modal. A low dosage of loaded DTX in FA‐CD@PP‐CpG can promote infiltration of CTLs to improve efficacy of anti‐PD‐L1 antibody (aPD‐L1), suppress MDSCs, and effectively polarize MDSCs toward M1 phenotype to reduce tumor burden, further to enhance the antitumor efficacy. Taken together, FA‐CD@PP‐CpG nanocomposites offer an efficient synergistic therapeutic modality in docetaxel‐enhanced immunotherapy for clinical application of breast cancer.
A multifunctional nanoplatform (FA‐CuS/DTX@PEI‐PpIX‐CpG, denoted as FA‐CD@PP‐CpG) for photodynamic therapy, photothermal therapy, and docetaxel‐enhanced immunotherapy is developed. FA‐CD@PP‐CpG with no obvious side effects can inhibit tumor growth through promoting infiltration of cytotoxic T lymphocytes to improve efficacy of anti‐programmed cell death‐ligand 1, and polarizing myeloid‐derived suppressor cells toward M1 phenotype. The FA‐CD@PP‐CpG nanocomposite offers an efficient synergistic therapeutic modality.</description><subject>Animals</subject><subject>Antibodies</subject><subject>Antibodies, Monoclonal, Humanized - chemistry</subject><subject>Antibodies, Monoclonal, Humanized - therapeutic use</subject><subject>Anticancer properties</subject><subject>Breast cancer</subject><subject>Cell Line, Tumor</subject><subject>Cell Survival - drug effects</subject><subject>Copper - chemistry</subject><subject>Copper sulfides</subject><subject>CpG</subject><subject>Disease control</subject><subject>docetaxel</subject><subject>Docetaxel - chemistry</subject><subject>Docetaxel - pharmacology</subject><subject>Docetaxel - therapeutic use</subject><subject>Drug Carriers - chemistry</subject><subject>Drug delivery systems</subject><subject>Folic Acid - chemistry</subject><subject>Humans</subject><subject>Immunotherapy</subject><subject>Infiltration</subject><subject>Lasers</subject><subject>Light therapy</subject><subject>Lymphocytes</subject><subject>Macrophages</subject><subject>Mice</subject><subject>Nanocomposites</subject><subject>Nanocomposites - chemistry</subject><subject>Oligonucleotides - chemistry</subject><subject>PD‐L1/anti PD‐L1</subject><subject>Photodynamic therapy</subject><subject>Phototherapy</subject><subject>Photothermal conversion</subject><subject>Polyethyleneimine - chemistry</subject><subject>Protoporphyrins - chemistry</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>Side effects</subject><subject>T-Lymphocytes, Cytotoxic - cytology</subject><subject>T-Lymphocytes, Cytotoxic - immunology</subject><subject>T-Lymphocytes, Cytotoxic - metabolism</subject><subject>Triple Negative Breast Neoplasms - metabolism</subject><subject>Triple Negative Breast Neoplasms - pathology</subject><subject>Triple Negative Breast Neoplasms - therapy</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0cFu0zAYwHELgVgZXDkiS1y4pNiOE-c7lnaMSStMopwjJ_nSZkriYDsr4cQj8DQ8EE-CS0eRuHDywT__besj5Dlnc86YeK2rTs8F48AkgHpAZjwRPJIMkodkxiBOIkhldkaeOHfLGIOUpY_JWcyV4HHMZ-THZuyM_fnt-0bbLXqs6MqOW6r7ii6HS7rCtrlDO9GPk_PY0dpYerMz3vgdWj1Mv-HKlOj1F2xD5qLf6b4MmauuG_sT2zd-R29Mq23zVfvG9NSbvbYVXfPD3dOAdK1La4ad3qKjYX9jm6FF-h63wd8hfWNRO0-Xh7p1T8mjWrcOn92v5-TT24vN8l10_eHyarm4jspYxSoCWRSZVEVcKgY8TSFNUKUANeNFDbWQVZmUPKuTTGKZgMoSxWQsZF0BAEoZn5NXx-5gzecRnc-7xpXYtrpHM7pcxFyKJM0kBPryH3prRtuH1wUlIFWZyFhQ86MKn3XOYp0Ptum0nXLO8sNE88NE89NEw4EX99mx6LA68T8jDACOYN-0OP0nly9W68Xf-C_o0bHo</recordid><startdate>20191201</startdate><enddate>20191201</enddate><creator>Chen, Lv</creator><creator>Zhou, Lulu</creator><creator>Wang, Chunhui</creator><creator>Han, Yi</creator><creator>Lu, Yonglin</creator><creator>Liu, Jie</creator><creator>Hu, Xiaochun</creator><creator>Yao, Tianming</creator><creator>Lin, Yun</creator><creator>Liang, Shujing</creator><creator>Shi, Shuo</creator><creator>Dong, Chunyan</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4387-3445</orcidid></search><sort><creationdate>20191201</creationdate><title>Tumor‐Targeted Drug and CpG Delivery System for Phototherapy and Docetaxel‐Enhanced Immunotherapy with Polarization toward M1‐Type Macrophages on Triple Negative Breast Cancers</title><author>Chen, Lv ; Zhou, Lulu ; Wang, Chunhui ; Han, Yi ; Lu, Yonglin ; Liu, Jie ; Hu, Xiaochun ; Yao, Tianming ; Lin, Yun ; Liang, Shujing ; Shi, Shuo ; Dong, Chunyan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3737-94bb847b3c709166965e7699f01bf9f24dc5c18f584ec59785704324fd999e443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Animals</topic><topic>Antibodies</topic><topic>Antibodies, Monoclonal, Humanized - chemistry</topic><topic>Antibodies, Monoclonal, Humanized - therapeutic use</topic><topic>Anticancer properties</topic><topic>Breast cancer</topic><topic>Cell Line, Tumor</topic><topic>Cell Survival - drug effects</topic><topic>Copper - chemistry</topic><topic>Copper sulfides</topic><topic>CpG</topic><topic>Disease control</topic><topic>docetaxel</topic><topic>Docetaxel - chemistry</topic><topic>Docetaxel - pharmacology</topic><topic>Docetaxel - therapeutic use</topic><topic>Drug Carriers - chemistry</topic><topic>Drug delivery systems</topic><topic>Folic Acid - chemistry</topic><topic>Humans</topic><topic>Immunotherapy</topic><topic>Infiltration</topic><topic>Lasers</topic><topic>Light therapy</topic><topic>Lymphocytes</topic><topic>Macrophages</topic><topic>Mice</topic><topic>Nanocomposites</topic><topic>Nanocomposites - chemistry</topic><topic>Oligonucleotides - chemistry</topic><topic>PD‐L1/anti PD‐L1</topic><topic>Photodynamic therapy</topic><topic>Phototherapy</topic><topic>Photothermal conversion</topic><topic>Polyethyleneimine - chemistry</topic><topic>Protoporphyrins - chemistry</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>Side effects</topic><topic>T-Lymphocytes, Cytotoxic - cytology</topic><topic>T-Lymphocytes, Cytotoxic - immunology</topic><topic>T-Lymphocytes, Cytotoxic - metabolism</topic><topic>Triple Negative Breast Neoplasms - metabolism</topic><topic>Triple Negative Breast Neoplasms - pathology</topic><topic>Triple Negative Breast Neoplasms - therapy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Lv</creatorcontrib><creatorcontrib>Zhou, Lulu</creatorcontrib><creatorcontrib>Wang, Chunhui</creatorcontrib><creatorcontrib>Han, Yi</creatorcontrib><creatorcontrib>Lu, Yonglin</creatorcontrib><creatorcontrib>Liu, Jie</creatorcontrib><creatorcontrib>Hu, Xiaochun</creatorcontrib><creatorcontrib>Yao, Tianming</creatorcontrib><creatorcontrib>Lin, Yun</creatorcontrib><creatorcontrib>Liang, Shujing</creatorcontrib><creatorcontrib>Shi, Shuo</creatorcontrib><creatorcontrib>Dong, Chunyan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Lv</au><au>Zhou, Lulu</au><au>Wang, Chunhui</au><au>Han, Yi</au><au>Lu, Yonglin</au><au>Liu, Jie</au><au>Hu, Xiaochun</au><au>Yao, Tianming</au><au>Lin, Yun</au><au>Liang, Shujing</au><au>Shi, Shuo</au><au>Dong, Chunyan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tumor‐Targeted Drug and CpG Delivery System for Phototherapy and Docetaxel‐Enhanced Immunotherapy with Polarization toward M1‐Type Macrophages on Triple Negative Breast Cancers</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2019-12-01</date><risdate>2019</risdate><volume>31</volume><issue>52</issue><spage>e1904997</spage><epage>n/a</epage><pages>e1904997-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Cancer immunotherapy has achieved promising clinical responses in recent years owing to the potential of controlling metastatic disease. However, there is a limited research to prove the superior therapeutic efficacy of immunotherapy on breast cancer compared with melanoma and non‐small‐cell lung cancer because of its limited expression of PD‐L1, low infiltration of cytotoxic T lymphocytes (CTLs), and high level of myeloid‐derived suppressor cells (MDSCs). Herein, a multifunctional nanoplatform (FA‐CuS/DTX@PEI‐PpIX‐CpG nanocomposites, denoted as FA‐CD@PP‐CpG) for synergistic phototherapy (photodynamic therapy (PDT), photothermal therapy (PTT) included) and docetaxel (DTX)‐enhanced immunotherapy is successfully developed. The nanocomposites exhibit excellent PDT efficacy and photothermal conversion capability under 650 and 808 nm irradiation, respectively. More significantly, FA‐CD@PP‐CpG with no obvious side effects can remarkably inhibit the tumor growth in vivo based on a 4T1‐tumor‐bearing mice modal. A low dosage of loaded DTX in FA‐CD@PP‐CpG can promote infiltration of CTLs to improve efficacy of anti‐PD‐L1 antibody (aPD‐L1), suppress MDSCs, and effectively polarize MDSCs toward M1 phenotype to reduce tumor burden, further to enhance the antitumor efficacy. Taken together, FA‐CD@PP‐CpG nanocomposites offer an efficient synergistic therapeutic modality in docetaxel‐enhanced immunotherapy for clinical application of breast cancer.
A multifunctional nanoplatform (FA‐CuS/DTX@PEI‐PpIX‐CpG, denoted as FA‐CD@PP‐CpG) for photodynamic therapy, photothermal therapy, and docetaxel‐enhanced immunotherapy is developed. FA‐CD@PP‐CpG with no obvious side effects can inhibit tumor growth through promoting infiltration of cytotoxic T lymphocytes to improve efficacy of anti‐programmed cell death‐ligand 1, and polarizing myeloid‐derived suppressor cells toward M1 phenotype. The FA‐CD@PP‐CpG nanocomposite offers an efficient synergistic therapeutic modality.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>31721331</pmid><doi>10.1002/adma.201904997</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-4387-3445</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0935-9648 |
ispartof | Advanced materials (Weinheim), 2019-12, Vol.31 (52), p.e1904997-n/a |
issn | 0935-9648 1521-4095 |
language | eng |
recordid | cdi_proquest_miscellaneous_2314256849 |
source | MEDLINE; Wiley Online Library All Journals |
subjects | Animals Antibodies Antibodies, Monoclonal, Humanized - chemistry Antibodies, Monoclonal, Humanized - therapeutic use Anticancer properties Breast cancer Cell Line, Tumor Cell Survival - drug effects Copper - chemistry Copper sulfides CpG Disease control docetaxel Docetaxel - chemistry Docetaxel - pharmacology Docetaxel - therapeutic use Drug Carriers - chemistry Drug delivery systems Folic Acid - chemistry Humans Immunotherapy Infiltration Lasers Light therapy Lymphocytes Macrophages Mice Nanocomposites Nanocomposites - chemistry Oligonucleotides - chemistry PD‐L1/anti PD‐L1 Photodynamic therapy Phototherapy Photothermal conversion Polyethyleneimine - chemistry Protoporphyrins - chemistry Reactive Oxygen Species - metabolism Side effects T-Lymphocytes, Cytotoxic - cytology T-Lymphocytes, Cytotoxic - immunology T-Lymphocytes, Cytotoxic - metabolism Triple Negative Breast Neoplasms - metabolism Triple Negative Breast Neoplasms - pathology Triple Negative Breast Neoplasms - therapy |
title | Tumor‐Targeted Drug and CpG Delivery System for Phototherapy and Docetaxel‐Enhanced Immunotherapy with Polarization toward M1‐Type Macrophages on Triple Negative Breast Cancers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T10%3A38%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tumor%E2%80%90Targeted%20Drug%20and%20CpG%20Delivery%20System%20for%20Phototherapy%20and%20Docetaxel%E2%80%90Enhanced%20Immunotherapy%20with%20Polarization%20toward%20M1%E2%80%90Type%20Macrophages%20on%20Triple%20Negative%20Breast%20Cancers&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Chen,%20Lv&rft.date=2019-12-01&rft.volume=31&rft.issue=52&rft.spage=e1904997&rft.epage=n/a&rft.pages=e1904997-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.201904997&rft_dat=%3Cproquest_cross%3E2329678280%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2329678280&rft_id=info:pmid/31721331&rfr_iscdi=true |