A Bespoke Force Field To Describe Biomolecule Adsorption at the Aqueous Boron Nitride Interface
Reliable manipulation of the interface between 2D nanomaterials and biomolecules represents a current frontier in nanoscience. The ability to resolve the molecular-level structures of these biointerfaces would provide a fundamental data set that is needed to enable systematic and knowledge-based pro...
Gespeichert in:
Veröffentlicht in: | Langmuir 2019-12, Vol.35 (49), p.16234-16243 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 16243 |
---|---|
container_issue | 49 |
container_start_page | 16234 |
container_title | Langmuir |
container_volume | 35 |
creator | Budi, Akin Walsh, Tiffany R |
description | Reliable manipulation of the interface between 2D nanomaterials and biomolecules represents a current frontier in nanoscience. The ability to resolve the molecular-level structures of these biointerfaces would provide a fundamental data set that is needed to enable systematic and knowledge-based progress in this area. These structures are challenging to obtain via experiment alone, and molecular simulations offer a complementary approach to address this problem. Compared with graphene, the interface between hexagonal boron nitride (h-BN) and biomolecules is relatively understudied at present. While several force fields are currently available for modeling the h-BN/water interface, there is a lack of a suitable force field that can describe the interactions between h-BN, liquid water, and biomolecules. Here, we use density functional theory calculations to create a force field, BoNi-CHARMM, to describe biomolecular interactions at the aqueous h-BN interface. Verifying our force field presents an additional challenge, given the scarcity of available experimental data for these interfaces. We test our force field against experimental evidence regarding the water/surface contact angle and confirm that the force field provides experimentally consistent values. We also present preliminary data regarding predictions of the free energy of adsorption of a selection of amino acids at the aqueous h-BN interface, revealing arginine and tryptophan to be among the strongest binders. This force field provides an opportunity to initiate a systematic progression in our current understanding of how to capture the intermolecular interactions at the h-BN biointerface. |
doi_str_mv | 10.1021/acs.langmuir.9b03121 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2314252026</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2314252026</sourcerecordid><originalsourceid>FETCH-LOGICAL-a348t-871f3d859576251789a3c8457a601a19d7d68d49d9d6c9230320019e5ad3a263</originalsourceid><addsrcrecordid>eNp9kD9PwzAQxS0EoqXwDRDyyJLif4njsS0UKlWwdLdc2wGXJA52MvDtcWnLyHInnd67e_cD4BajKUYEPygdp7Vq35vBhanYIooJPgNjnBOU5SXh52CMOKMZZwUdgasYdwghQZm4BCOKOWa8zMdAzuDcxs5_Wrj0QafqbG3gxsNHG3VwWwvnzje-tnqoLZyZ6EPXO99C1cP-I02-BuuHCOc-pOGr64MzFq7a3oZKaXsNLipVR3tz7BOwWT5tFi_Z-u15tZitM0VZ2WclxxU1ZS5yXpAc81IoqkuWc1UgrLAw3BSlYcIIU2hBKKIEISxsrgxVpKATcH9Y2wWfAsVeNi5qWydA-3SSUMxIIvMrZQepDj7GYCvZBdeo8C0xknuyMpGVJ7LySDbZ7o4Xhm1jzZ_phDIJ0EGwt-_8ENr07_87fwC5iobJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2314252026</pqid></control><display><type>article</type><title>A Bespoke Force Field To Describe Biomolecule Adsorption at the Aqueous Boron Nitride Interface</title><source>ACS Publications</source><creator>Budi, Akin ; Walsh, Tiffany R</creator><creatorcontrib>Budi, Akin ; Walsh, Tiffany R</creatorcontrib><description>Reliable manipulation of the interface between 2D nanomaterials and biomolecules represents a current frontier in nanoscience. The ability to resolve the molecular-level structures of these biointerfaces would provide a fundamental data set that is needed to enable systematic and knowledge-based progress in this area. These structures are challenging to obtain via experiment alone, and molecular simulations offer a complementary approach to address this problem. Compared with graphene, the interface between hexagonal boron nitride (h-BN) and biomolecules is relatively understudied at present. While several force fields are currently available for modeling the h-BN/water interface, there is a lack of a suitable force field that can describe the interactions between h-BN, liquid water, and biomolecules. Here, we use density functional theory calculations to create a force field, BoNi-CHARMM, to describe biomolecular interactions at the aqueous h-BN interface. Verifying our force field presents an additional challenge, given the scarcity of available experimental data for these interfaces. We test our force field against experimental evidence regarding the water/surface contact angle and confirm that the force field provides experimentally consistent values. We also present preliminary data regarding predictions of the free energy of adsorption of a selection of amino acids at the aqueous h-BN interface, revealing arginine and tryptophan to be among the strongest binders. This force field provides an opportunity to initiate a systematic progression in our current understanding of how to capture the intermolecular interactions at the h-BN biointerface.</description><identifier>ISSN: 0743-7463</identifier><identifier>EISSN: 1520-5827</identifier><identifier>DOI: 10.1021/acs.langmuir.9b03121</identifier><identifier>PMID: 31714785</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Langmuir, 2019-12, Vol.35 (49), p.16234-16243</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a348t-871f3d859576251789a3c8457a601a19d7d68d49d9d6c9230320019e5ad3a263</citedby><cites>FETCH-LOGICAL-a348t-871f3d859576251789a3c8457a601a19d7d68d49d9d6c9230320019e5ad3a263</cites><orcidid>0000-0002-9929-1279 ; 0000-0002-0233-9484</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.langmuir.9b03121$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.langmuir.9b03121$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31714785$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Budi, Akin</creatorcontrib><creatorcontrib>Walsh, Tiffany R</creatorcontrib><title>A Bespoke Force Field To Describe Biomolecule Adsorption at the Aqueous Boron Nitride Interface</title><title>Langmuir</title><addtitle>Langmuir</addtitle><description>Reliable manipulation of the interface between 2D nanomaterials and biomolecules represents a current frontier in nanoscience. The ability to resolve the molecular-level structures of these biointerfaces would provide a fundamental data set that is needed to enable systematic and knowledge-based progress in this area. These structures are challenging to obtain via experiment alone, and molecular simulations offer a complementary approach to address this problem. Compared with graphene, the interface between hexagonal boron nitride (h-BN) and biomolecules is relatively understudied at present. While several force fields are currently available for modeling the h-BN/water interface, there is a lack of a suitable force field that can describe the interactions between h-BN, liquid water, and biomolecules. Here, we use density functional theory calculations to create a force field, BoNi-CHARMM, to describe biomolecular interactions at the aqueous h-BN interface. Verifying our force field presents an additional challenge, given the scarcity of available experimental data for these interfaces. We test our force field against experimental evidence regarding the water/surface contact angle and confirm that the force field provides experimentally consistent values. We also present preliminary data regarding predictions of the free energy of adsorption of a selection of amino acids at the aqueous h-BN interface, revealing arginine and tryptophan to be among the strongest binders. This force field provides an opportunity to initiate a systematic progression in our current understanding of how to capture the intermolecular interactions at the h-BN biointerface.</description><issn>0743-7463</issn><issn>1520-5827</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kD9PwzAQxS0EoqXwDRDyyJLif4njsS0UKlWwdLdc2wGXJA52MvDtcWnLyHInnd67e_cD4BajKUYEPygdp7Vq35vBhanYIooJPgNjnBOU5SXh52CMOKMZZwUdgasYdwghQZm4BCOKOWa8zMdAzuDcxs5_Wrj0QafqbG3gxsNHG3VwWwvnzje-tnqoLZyZ6EPXO99C1cP-I02-BuuHCOc-pOGr64MzFq7a3oZKaXsNLipVR3tz7BOwWT5tFi_Z-u15tZitM0VZ2WclxxU1ZS5yXpAc81IoqkuWc1UgrLAw3BSlYcIIU2hBKKIEISxsrgxVpKATcH9Y2wWfAsVeNi5qWydA-3SSUMxIIvMrZQepDj7GYCvZBdeo8C0xknuyMpGVJ7LySDbZ7o4Xhm1jzZ_phDIJ0EGwt-_8ENr07_87fwC5iobJ</recordid><startdate>20191210</startdate><enddate>20191210</enddate><creator>Budi, Akin</creator><creator>Walsh, Tiffany R</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9929-1279</orcidid><orcidid>https://orcid.org/0000-0002-0233-9484</orcidid></search><sort><creationdate>20191210</creationdate><title>A Bespoke Force Field To Describe Biomolecule Adsorption at the Aqueous Boron Nitride Interface</title><author>Budi, Akin ; Walsh, Tiffany R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a348t-871f3d859576251789a3c8457a601a19d7d68d49d9d6c9230320019e5ad3a263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Budi, Akin</creatorcontrib><creatorcontrib>Walsh, Tiffany R</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Langmuir</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Budi, Akin</au><au>Walsh, Tiffany R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Bespoke Force Field To Describe Biomolecule Adsorption at the Aqueous Boron Nitride Interface</atitle><jtitle>Langmuir</jtitle><addtitle>Langmuir</addtitle><date>2019-12-10</date><risdate>2019</risdate><volume>35</volume><issue>49</issue><spage>16234</spage><epage>16243</epage><pages>16234-16243</pages><issn>0743-7463</issn><eissn>1520-5827</eissn><abstract>Reliable manipulation of the interface between 2D nanomaterials and biomolecules represents a current frontier in nanoscience. The ability to resolve the molecular-level structures of these biointerfaces would provide a fundamental data set that is needed to enable systematic and knowledge-based progress in this area. These structures are challenging to obtain via experiment alone, and molecular simulations offer a complementary approach to address this problem. Compared with graphene, the interface between hexagonal boron nitride (h-BN) and biomolecules is relatively understudied at present. While several force fields are currently available for modeling the h-BN/water interface, there is a lack of a suitable force field that can describe the interactions between h-BN, liquid water, and biomolecules. Here, we use density functional theory calculations to create a force field, BoNi-CHARMM, to describe biomolecular interactions at the aqueous h-BN interface. Verifying our force field presents an additional challenge, given the scarcity of available experimental data for these interfaces. We test our force field against experimental evidence regarding the water/surface contact angle and confirm that the force field provides experimentally consistent values. We also present preliminary data regarding predictions of the free energy of adsorption of a selection of amino acids at the aqueous h-BN interface, revealing arginine and tryptophan to be among the strongest binders. This force field provides an opportunity to initiate a systematic progression in our current understanding of how to capture the intermolecular interactions at the h-BN biointerface.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>31714785</pmid><doi>10.1021/acs.langmuir.9b03121</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-9929-1279</orcidid><orcidid>https://orcid.org/0000-0002-0233-9484</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0743-7463 |
ispartof | Langmuir, 2019-12, Vol.35 (49), p.16234-16243 |
issn | 0743-7463 1520-5827 |
language | eng |
recordid | cdi_proquest_miscellaneous_2314252026 |
source | ACS Publications |
title | A Bespoke Force Field To Describe Biomolecule Adsorption at the Aqueous Boron Nitride Interface |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T19%3A51%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Bespoke%20Force%20Field%20To%20Describe%20Biomolecule%20Adsorption%20at%20the%20Aqueous%20Boron%20Nitride%20Interface&rft.jtitle=Langmuir&rft.au=Budi,%20Akin&rft.date=2019-12-10&rft.volume=35&rft.issue=49&rft.spage=16234&rft.epage=16243&rft.pages=16234-16243&rft.issn=0743-7463&rft.eissn=1520-5827&rft_id=info:doi/10.1021/acs.langmuir.9b03121&rft_dat=%3Cproquest_cross%3E2314252026%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2314252026&rft_id=info:pmid/31714785&rfr_iscdi=true |