Aptamer-Based Erythrocyte-Derived Mimic Vesicles Loaded with siRNA and Doxorubicin for the Targeted Treatment of Multidrug-Resistant Tumors
Multidrug resistance (MDR) remains one of the most important challenges to clinical chemotherapeutics. In this study, versatile mimic vesicles (MVs) derived from erythrocytes were investigated as delivery systems for siRNA and doxorubicin (DOX) to treat MDR tumors. The carriers could be readily obta...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2019-12, Vol.11 (49), p.45455-45466 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 45466 |
---|---|
container_issue | 49 |
container_start_page | 45455 |
container_title | ACS applied materials & interfaces |
container_volume | 11 |
creator | Wang, Tengfei Luo, Yu Lv, Haiyin Wang, Jine Zhang, Ye Pei, Renjun |
description | Multidrug resistance (MDR) remains one of the most important challenges to clinical chemotherapeutics. In this study, versatile mimic vesicles (MVs) derived from erythrocytes were investigated as delivery systems for siRNA and doxorubicin (DOX) to treat MDR tumors. The carriers could be readily obtained through extruding erythrocyte membranes and had the advantages of biological homogeneity, high output, controllable size, low cost, and excellent biocompatibility. Moreover, aptamers modified on the MVs endowed the carriers with tumor-targeting capacity. DOX and P-glycoprotein (P-gp) siRNA were loaded onto the MVs through incubation and cholesterol-mediated methods, achieving high loading rates and targeted tumor delivery. The drug-loaded carriers could successfully overcome drug resistance and synergistically kill MDR tumors through P-gp silencing and DOX-induced growth inhibition. This MV-based drug delivery system therefore provides new insights into the synergistic targeting of MDR tumors and offers an alternative delivery strategy to overcome MDR. |
doi_str_mv | 10.1021/acsami.9b16637 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2314246730</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2314246730</sourcerecordid><originalsourceid>FETCH-LOGICAL-a330t-c68124eb198f1eb0542446b29120450f5492981ea476a6cc0751e561fde58d453</originalsourceid><addsrcrecordid>eNp1kU1r3DAQhkVIyVd7zTHoGAreaGRJto_bzUcLmwTCtlcjy-Osgm1tJbnt_ob-6SrsJreeJF6eeWDmJeQc2AwYhyttgh7srGpAqbw4ICdQCZGVXPLD978Qx-Q0hBfGVM6ZPCLHORRQgqxOyN_5JuoBffZFB2zpjd_GtXdmGzG7Rm9_pezeDtbQHxis6THQpdNtSn_buKbBPj3MqR5beu3-OD811tiRds7TuEa60v4ZY2JXHnUccIzUdfR-6qNt_fScPSVliDrFq2lwPnwkHzrdB_y0f8_I99ub1eJrtny8-7aYLzOd5yxmRpXABTZQlR1gw6RIG6qGV8CZkKyTouJVCahFobQyhhUSUCroWpRlK2R-Ri533o13PycMsR5sMNj3ekQ3hZrnkJSqyFlCZzvUeBeCx67eeDtov62B1a8F1LsC6n0BaeBi756aAdt3_O3iCfi8A9Jg_eImP6ZV_2f7B5L4kT4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2314246730</pqid></control><display><type>article</type><title>Aptamer-Based Erythrocyte-Derived Mimic Vesicles Loaded with siRNA and Doxorubicin for the Targeted Treatment of Multidrug-Resistant Tumors</title><source>MEDLINE</source><source>ACS Publications</source><creator>Wang, Tengfei ; Luo, Yu ; Lv, Haiyin ; Wang, Jine ; Zhang, Ye ; Pei, Renjun</creator><creatorcontrib>Wang, Tengfei ; Luo, Yu ; Lv, Haiyin ; Wang, Jine ; Zhang, Ye ; Pei, Renjun</creatorcontrib><description>Multidrug resistance (MDR) remains one of the most important challenges to clinical chemotherapeutics. In this study, versatile mimic vesicles (MVs) derived from erythrocytes were investigated as delivery systems for siRNA and doxorubicin (DOX) to treat MDR tumors. The carriers could be readily obtained through extruding erythrocyte membranes and had the advantages of biological homogeneity, high output, controllable size, low cost, and excellent biocompatibility. Moreover, aptamers modified on the MVs endowed the carriers with tumor-targeting capacity. DOX and P-glycoprotein (P-gp) siRNA were loaded onto the MVs through incubation and cholesterol-mediated methods, achieving high loading rates and targeted tumor delivery. The drug-loaded carriers could successfully overcome drug resistance and synergistically kill MDR tumors through P-gp silencing and DOX-induced growth inhibition. This MV-based drug delivery system therefore provides new insights into the synergistic targeting of MDR tumors and offers an alternative delivery strategy to overcome MDR.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.9b16637</identifier><identifier>PMID: 31718159</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Biocompatible Materials - chemistry ; Biocompatible Materials - pharmacology ; Cell Line, Tumor ; Cell Proliferation - drug effects ; Cell-Derived Microparticles - chemistry ; Cholesterol - chemistry ; Doxorubicin - chemistry ; Doxorubicin - pharmacology ; Drug Carriers - chemistry ; Drug Carriers - pharmacology ; Drug Resistance, Multiple - drug effects ; Drug Resistance, Neoplasm - drug effects ; Erythrocytes - chemistry ; Humans ; Nanoparticles - chemistry ; Neoplasms - drug therapy ; RNA, Small Interfering - chemistry ; RNA, Small Interfering - pharmacology</subject><ispartof>ACS applied materials & interfaces, 2019-12, Vol.11 (49), p.45455-45466</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a330t-c68124eb198f1eb0542446b29120450f5492981ea476a6cc0751e561fde58d453</citedby><cites>FETCH-LOGICAL-a330t-c68124eb198f1eb0542446b29120450f5492981ea476a6cc0751e561fde58d453</cites><orcidid>0000-0003-0587-4738 ; 0000-0002-9353-3935 ; 0000-0003-0614-6150 ; 0000-0003-1827-2752</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.9b16637$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.9b16637$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31718159$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Tengfei</creatorcontrib><creatorcontrib>Luo, Yu</creatorcontrib><creatorcontrib>Lv, Haiyin</creatorcontrib><creatorcontrib>Wang, Jine</creatorcontrib><creatorcontrib>Zhang, Ye</creatorcontrib><creatorcontrib>Pei, Renjun</creatorcontrib><title>Aptamer-Based Erythrocyte-Derived Mimic Vesicles Loaded with siRNA and Doxorubicin for the Targeted Treatment of Multidrug-Resistant Tumors</title><title>ACS applied materials & interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Multidrug resistance (MDR) remains one of the most important challenges to clinical chemotherapeutics. In this study, versatile mimic vesicles (MVs) derived from erythrocytes were investigated as delivery systems for siRNA and doxorubicin (DOX) to treat MDR tumors. The carriers could be readily obtained through extruding erythrocyte membranes and had the advantages of biological homogeneity, high output, controllable size, low cost, and excellent biocompatibility. Moreover, aptamers modified on the MVs endowed the carriers with tumor-targeting capacity. DOX and P-glycoprotein (P-gp) siRNA were loaded onto the MVs through incubation and cholesterol-mediated methods, achieving high loading rates and targeted tumor delivery. The drug-loaded carriers could successfully overcome drug resistance and synergistically kill MDR tumors through P-gp silencing and DOX-induced growth inhibition. This MV-based drug delivery system therefore provides new insights into the synergistic targeting of MDR tumors and offers an alternative delivery strategy to overcome MDR.</description><subject>Biocompatible Materials - chemistry</subject><subject>Biocompatible Materials - pharmacology</subject><subject>Cell Line, Tumor</subject><subject>Cell Proliferation - drug effects</subject><subject>Cell-Derived Microparticles - chemistry</subject><subject>Cholesterol - chemistry</subject><subject>Doxorubicin - chemistry</subject><subject>Doxorubicin - pharmacology</subject><subject>Drug Carriers - chemistry</subject><subject>Drug Carriers - pharmacology</subject><subject>Drug Resistance, Multiple - drug effects</subject><subject>Drug Resistance, Neoplasm - drug effects</subject><subject>Erythrocytes - chemistry</subject><subject>Humans</subject><subject>Nanoparticles - chemistry</subject><subject>Neoplasms - drug therapy</subject><subject>RNA, Small Interfering - chemistry</subject><subject>RNA, Small Interfering - pharmacology</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kU1r3DAQhkVIyVd7zTHoGAreaGRJto_bzUcLmwTCtlcjy-Osgm1tJbnt_ob-6SrsJreeJF6eeWDmJeQc2AwYhyttgh7srGpAqbw4ICdQCZGVXPLD978Qx-Q0hBfGVM6ZPCLHORRQgqxOyN_5JuoBffZFB2zpjd_GtXdmGzG7Rm9_pezeDtbQHxis6THQpdNtSn_buKbBPj3MqR5beu3-OD811tiRds7TuEa60v4ZY2JXHnUccIzUdfR-6qNt_fScPSVliDrFq2lwPnwkHzrdB_y0f8_I99ub1eJrtny8-7aYLzOd5yxmRpXABTZQlR1gw6RIG6qGV8CZkKyTouJVCahFobQyhhUSUCroWpRlK2R-Ri533o13PycMsR5sMNj3ekQ3hZrnkJSqyFlCZzvUeBeCx67eeDtov62B1a8F1LsC6n0BaeBi756aAdt3_O3iCfi8A9Jg_eImP6ZV_2f7B5L4kT4</recordid><startdate>20191211</startdate><enddate>20191211</enddate><creator>Wang, Tengfei</creator><creator>Luo, Yu</creator><creator>Lv, Haiyin</creator><creator>Wang, Jine</creator><creator>Zhang, Ye</creator><creator>Pei, Renjun</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0587-4738</orcidid><orcidid>https://orcid.org/0000-0002-9353-3935</orcidid><orcidid>https://orcid.org/0000-0003-0614-6150</orcidid><orcidid>https://orcid.org/0000-0003-1827-2752</orcidid></search><sort><creationdate>20191211</creationdate><title>Aptamer-Based Erythrocyte-Derived Mimic Vesicles Loaded with siRNA and Doxorubicin for the Targeted Treatment of Multidrug-Resistant Tumors</title><author>Wang, Tengfei ; Luo, Yu ; Lv, Haiyin ; Wang, Jine ; Zhang, Ye ; Pei, Renjun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a330t-c68124eb198f1eb0542446b29120450f5492981ea476a6cc0751e561fde58d453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Biocompatible Materials - chemistry</topic><topic>Biocompatible Materials - pharmacology</topic><topic>Cell Line, Tumor</topic><topic>Cell Proliferation - drug effects</topic><topic>Cell-Derived Microparticles - chemistry</topic><topic>Cholesterol - chemistry</topic><topic>Doxorubicin - chemistry</topic><topic>Doxorubicin - pharmacology</topic><topic>Drug Carriers - chemistry</topic><topic>Drug Carriers - pharmacology</topic><topic>Drug Resistance, Multiple - drug effects</topic><topic>Drug Resistance, Neoplasm - drug effects</topic><topic>Erythrocytes - chemistry</topic><topic>Humans</topic><topic>Nanoparticles - chemistry</topic><topic>Neoplasms - drug therapy</topic><topic>RNA, Small Interfering - chemistry</topic><topic>RNA, Small Interfering - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Tengfei</creatorcontrib><creatorcontrib>Luo, Yu</creatorcontrib><creatorcontrib>Lv, Haiyin</creatorcontrib><creatorcontrib>Wang, Jine</creatorcontrib><creatorcontrib>Zhang, Ye</creatorcontrib><creatorcontrib>Pei, Renjun</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials & interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Tengfei</au><au>Luo, Yu</au><au>Lv, Haiyin</au><au>Wang, Jine</au><au>Zhang, Ye</au><au>Pei, Renjun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Aptamer-Based Erythrocyte-Derived Mimic Vesicles Loaded with siRNA and Doxorubicin for the Targeted Treatment of Multidrug-Resistant Tumors</atitle><jtitle>ACS applied materials & interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2019-12-11</date><risdate>2019</risdate><volume>11</volume><issue>49</issue><spage>45455</spage><epage>45466</epage><pages>45455-45466</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Multidrug resistance (MDR) remains one of the most important challenges to clinical chemotherapeutics. In this study, versatile mimic vesicles (MVs) derived from erythrocytes were investigated as delivery systems for siRNA and doxorubicin (DOX) to treat MDR tumors. The carriers could be readily obtained through extruding erythrocyte membranes and had the advantages of biological homogeneity, high output, controllable size, low cost, and excellent biocompatibility. Moreover, aptamers modified on the MVs endowed the carriers with tumor-targeting capacity. DOX and P-glycoprotein (P-gp) siRNA were loaded onto the MVs through incubation and cholesterol-mediated methods, achieving high loading rates and targeted tumor delivery. The drug-loaded carriers could successfully overcome drug resistance and synergistically kill MDR tumors through P-gp silencing and DOX-induced growth inhibition. This MV-based drug delivery system therefore provides new insights into the synergistic targeting of MDR tumors and offers an alternative delivery strategy to overcome MDR.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>31718159</pmid><doi>10.1021/acsami.9b16637</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-0587-4738</orcidid><orcidid>https://orcid.org/0000-0002-9353-3935</orcidid><orcidid>https://orcid.org/0000-0003-0614-6150</orcidid><orcidid>https://orcid.org/0000-0003-1827-2752</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1944-8244 |
ispartof | ACS applied materials & interfaces, 2019-12, Vol.11 (49), p.45455-45466 |
issn | 1944-8244 1944-8252 |
language | eng |
recordid | cdi_proquest_miscellaneous_2314246730 |
source | MEDLINE; ACS Publications |
subjects | Biocompatible Materials - chemistry Biocompatible Materials - pharmacology Cell Line, Tumor Cell Proliferation - drug effects Cell-Derived Microparticles - chemistry Cholesterol - chemistry Doxorubicin - chemistry Doxorubicin - pharmacology Drug Carriers - chemistry Drug Carriers - pharmacology Drug Resistance, Multiple - drug effects Drug Resistance, Neoplasm - drug effects Erythrocytes - chemistry Humans Nanoparticles - chemistry Neoplasms - drug therapy RNA, Small Interfering - chemistry RNA, Small Interfering - pharmacology |
title | Aptamer-Based Erythrocyte-Derived Mimic Vesicles Loaded with siRNA and Doxorubicin for the Targeted Treatment of Multidrug-Resistant Tumors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T18%3A56%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Aptamer-Based%20Erythrocyte-Derived%20Mimic%20Vesicles%20Loaded%20with%20siRNA%20and%20Doxorubicin%20for%20the%20Targeted%20Treatment%20of%20Multidrug-Resistant%20Tumors&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Wang,%20Tengfei&rft.date=2019-12-11&rft.volume=11&rft.issue=49&rft.spage=45455&rft.epage=45466&rft.pages=45455-45466&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.9b16637&rft_dat=%3Cproquest_cross%3E2314246730%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2314246730&rft_id=info:pmid/31718159&rfr_iscdi=true |