Chiral Core–Shell Upconversion Nanoparticle@MOF Nanoassemblies for Quantification and Bioimaging of Reactive Oxygen Species in Vivo

In this study, a hybrid nanoassembly consisting of an upconversion nanoparticle (UCNP) core and a zeolitic imidazolate framework-8 (ZIF) shell encapsulated with chiral NiSx NPs (denoted as UCNP@ZIF-NiSx) were fabricated. The UCNP@ZIF-NiSx nanoassemblies showed an intense circular dichroism (CD) sign...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2019-12, Vol.141 (49), p.19373-19378
Hauptverfasser: Hao, Changlong, Wu, Xiaoling, Sun, Maozhong, Zhang, Hongyu, Yuan, Aimeng, Xu, Liguang, Xu, Chuanlai, Kuang, Hua
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 19378
container_issue 49
container_start_page 19373
container_title Journal of the American Chemical Society
container_volume 141
creator Hao, Changlong
Wu, Xiaoling
Sun, Maozhong
Zhang, Hongyu
Yuan, Aimeng
Xu, Liguang
Xu, Chuanlai
Kuang, Hua
description In this study, a hybrid nanoassembly consisting of an upconversion nanoparticle (UCNP) core and a zeolitic imidazolate framework-8 (ZIF) shell encapsulated with chiral NiSx NPs (denoted as UCNP@ZIF-NiSx) were fabricated. The UCNP@ZIF-NiSx nanoassemblies showed an intense circular dichroism (CD) signal at 440 and 530 nm, whereas the upconversion luminescence (UCL) signal of the UCNPs at 540 nm were quenched by NiSx NPs and the UCL signal at 660 nm was almost unchanged. By taking advantage of the chiral-optical and fluorescent signals, the dual mode nanoassemblies can be used for quantitively monitoring reactive oxygen species (ROS), with hydrogen peroxide (H2O2) as the proof-of-concept target in living cells. The experimental results revealed that UCNP@ZIF-NiSx has been changed into UCNP@ZIF with degradation of NiSx during the detection process. Noticeably, quantitative and selective detection of ROS was successfully carried out in vivo. This strategy highlights the potential of chiral nanoassemblies for ROS detection, which opens up a new avenue to develop the toolbox of chiral nanomaterials for biomedical and biological analysis.
doi_str_mv 10.1021/jacs.9b09360
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2314035123</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2314035123</sourcerecordid><originalsourceid>FETCH-LOGICAL-a324t-6fe76371436f4bc2f90860645b86ab9fa54aa82f806d97b46ce9bf6a88e8067d3</originalsourceid><addsrcrecordid>eNptkE9P3DAQxa2qqCzQW8_Ixx4I-E_WSW7ACgoSsKKUXqOJd7x4lbWDnazgxqWfgG_YT9KkLHDhNJrRe2_0foR842yfM8EPFqDjflGxQir2iYz4WLBkzIX6TEaMMZFkuZKbZCvGRb-mIudfyKbkGeeiECPyZ3JnA9R04gP-fXq-ucO6preN9m6FIVrv6BU430Bora7x8HJ6-v8AMeKyqi1Ganyg1x241hqroR0s4Gb02Hq7hLl1c-oN_YmgW7tCOn14nKOjNw3qwWwd_W1XfodsGKgjfl3PbXJ7evJrcpZcTH-cT44uEpAibRNlMFMy46lUJq20MAXLFVPpuMoVVIWBcQqQC5MzNSuyKlUai8ooyHPsT9lMbpPvL7lN8PcdxrZc2qj7yuDQd7EUkqdM9vRkL917kergYwxoyib0hcJjyVk5gC8H8OUafC_fXSd31RJnb-JX0u-vB9fCd8H1RT_O-gc2xo6C</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2314035123</pqid></control><display><type>article</type><title>Chiral Core–Shell Upconversion Nanoparticle@MOF Nanoassemblies for Quantification and Bioimaging of Reactive Oxygen Species in Vivo</title><source>American Chemical Society Publications</source><creator>Hao, Changlong ; Wu, Xiaoling ; Sun, Maozhong ; Zhang, Hongyu ; Yuan, Aimeng ; Xu, Liguang ; Xu, Chuanlai ; Kuang, Hua</creator><creatorcontrib>Hao, Changlong ; Wu, Xiaoling ; Sun, Maozhong ; Zhang, Hongyu ; Yuan, Aimeng ; Xu, Liguang ; Xu, Chuanlai ; Kuang, Hua</creatorcontrib><description>In this study, a hybrid nanoassembly consisting of an upconversion nanoparticle (UCNP) core and a zeolitic imidazolate framework-8 (ZIF) shell encapsulated with chiral NiSx NPs (denoted as UCNP@ZIF-NiSx) were fabricated. The UCNP@ZIF-NiSx nanoassemblies showed an intense circular dichroism (CD) signal at 440 and 530 nm, whereas the upconversion luminescence (UCL) signal of the UCNPs at 540 nm were quenched by NiSx NPs and the UCL signal at 660 nm was almost unchanged. By taking advantage of the chiral-optical and fluorescent signals, the dual mode nanoassemblies can be used for quantitively monitoring reactive oxygen species (ROS), with hydrogen peroxide (H2O2) as the proof-of-concept target in living cells. The experimental results revealed that UCNP@ZIF-NiSx has been changed into UCNP@ZIF with degradation of NiSx during the detection process. Noticeably, quantitative and selective detection of ROS was successfully carried out in vivo. This strategy highlights the potential of chiral nanoassemblies for ROS detection, which opens up a new avenue to develop the toolbox of chiral nanomaterials for biomedical and biological analysis.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.9b09360</identifier><identifier>PMID: 31711292</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Journal of the American Chemical Society, 2019-12, Vol.141 (49), p.19373-19378</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a324t-6fe76371436f4bc2f90860645b86ab9fa54aa82f806d97b46ce9bf6a88e8067d3</citedby><cites>FETCH-LOGICAL-a324t-6fe76371436f4bc2f90860645b86ab9fa54aa82f806d97b46ce9bf6a88e8067d3</cites><orcidid>0000-0002-5639-7102</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jacs.9b09360$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jacs.9b09360$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2751,27055,27903,27904,56716,56766</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31711292$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hao, Changlong</creatorcontrib><creatorcontrib>Wu, Xiaoling</creatorcontrib><creatorcontrib>Sun, Maozhong</creatorcontrib><creatorcontrib>Zhang, Hongyu</creatorcontrib><creatorcontrib>Yuan, Aimeng</creatorcontrib><creatorcontrib>Xu, Liguang</creatorcontrib><creatorcontrib>Xu, Chuanlai</creatorcontrib><creatorcontrib>Kuang, Hua</creatorcontrib><title>Chiral Core–Shell Upconversion Nanoparticle@MOF Nanoassemblies for Quantification and Bioimaging of Reactive Oxygen Species in Vivo</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>In this study, a hybrid nanoassembly consisting of an upconversion nanoparticle (UCNP) core and a zeolitic imidazolate framework-8 (ZIF) shell encapsulated with chiral NiSx NPs (denoted as UCNP@ZIF-NiSx) were fabricated. The UCNP@ZIF-NiSx nanoassemblies showed an intense circular dichroism (CD) signal at 440 and 530 nm, whereas the upconversion luminescence (UCL) signal of the UCNPs at 540 nm were quenched by NiSx NPs and the UCL signal at 660 nm was almost unchanged. By taking advantage of the chiral-optical and fluorescent signals, the dual mode nanoassemblies can be used for quantitively monitoring reactive oxygen species (ROS), with hydrogen peroxide (H2O2) as the proof-of-concept target in living cells. The experimental results revealed that UCNP@ZIF-NiSx has been changed into UCNP@ZIF with degradation of NiSx during the detection process. Noticeably, quantitative and selective detection of ROS was successfully carried out in vivo. This strategy highlights the potential of chiral nanoassemblies for ROS detection, which opens up a new avenue to develop the toolbox of chiral nanomaterials for biomedical and biological analysis.</description><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNptkE9P3DAQxa2qqCzQW8_Ixx4I-E_WSW7ACgoSsKKUXqOJd7x4lbWDnazgxqWfgG_YT9KkLHDhNJrRe2_0foR842yfM8EPFqDjflGxQir2iYz4WLBkzIX6TEaMMZFkuZKbZCvGRb-mIudfyKbkGeeiECPyZ3JnA9R04gP-fXq-ucO6preN9m6FIVrv6BU430Bora7x8HJ6-v8AMeKyqi1Ganyg1x241hqroR0s4Gb02Hq7hLl1c-oN_YmgW7tCOn14nKOjNw3qwWwd_W1XfodsGKgjfl3PbXJ7evJrcpZcTH-cT44uEpAibRNlMFMy46lUJq20MAXLFVPpuMoVVIWBcQqQC5MzNSuyKlUai8ooyHPsT9lMbpPvL7lN8PcdxrZc2qj7yuDQd7EUkqdM9vRkL917kergYwxoyib0hcJjyVk5gC8H8OUafC_fXSd31RJnb-JX0u-vB9fCd8H1RT_O-gc2xo6C</recordid><startdate>20191211</startdate><enddate>20191211</enddate><creator>Hao, Changlong</creator><creator>Wu, Xiaoling</creator><creator>Sun, Maozhong</creator><creator>Zhang, Hongyu</creator><creator>Yuan, Aimeng</creator><creator>Xu, Liguang</creator><creator>Xu, Chuanlai</creator><creator>Kuang, Hua</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5639-7102</orcidid></search><sort><creationdate>20191211</creationdate><title>Chiral Core–Shell Upconversion Nanoparticle@MOF Nanoassemblies for Quantification and Bioimaging of Reactive Oxygen Species in Vivo</title><author>Hao, Changlong ; Wu, Xiaoling ; Sun, Maozhong ; Zhang, Hongyu ; Yuan, Aimeng ; Xu, Liguang ; Xu, Chuanlai ; Kuang, Hua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a324t-6fe76371436f4bc2f90860645b86ab9fa54aa82f806d97b46ce9bf6a88e8067d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hao, Changlong</creatorcontrib><creatorcontrib>Wu, Xiaoling</creatorcontrib><creatorcontrib>Sun, Maozhong</creatorcontrib><creatorcontrib>Zhang, Hongyu</creatorcontrib><creatorcontrib>Yuan, Aimeng</creatorcontrib><creatorcontrib>Xu, Liguang</creatorcontrib><creatorcontrib>Xu, Chuanlai</creatorcontrib><creatorcontrib>Kuang, Hua</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hao, Changlong</au><au>Wu, Xiaoling</au><au>Sun, Maozhong</au><au>Zhang, Hongyu</au><au>Yuan, Aimeng</au><au>Xu, Liguang</au><au>Xu, Chuanlai</au><au>Kuang, Hua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chiral Core–Shell Upconversion Nanoparticle@MOF Nanoassemblies for Quantification and Bioimaging of Reactive Oxygen Species in Vivo</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2019-12-11</date><risdate>2019</risdate><volume>141</volume><issue>49</issue><spage>19373</spage><epage>19378</epage><pages>19373-19378</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>In this study, a hybrid nanoassembly consisting of an upconversion nanoparticle (UCNP) core and a zeolitic imidazolate framework-8 (ZIF) shell encapsulated with chiral NiSx NPs (denoted as UCNP@ZIF-NiSx) were fabricated. The UCNP@ZIF-NiSx nanoassemblies showed an intense circular dichroism (CD) signal at 440 and 530 nm, whereas the upconversion luminescence (UCL) signal of the UCNPs at 540 nm were quenched by NiSx NPs and the UCL signal at 660 nm was almost unchanged. By taking advantage of the chiral-optical and fluorescent signals, the dual mode nanoassemblies can be used for quantitively monitoring reactive oxygen species (ROS), with hydrogen peroxide (H2O2) as the proof-of-concept target in living cells. The experimental results revealed that UCNP@ZIF-NiSx has been changed into UCNP@ZIF with degradation of NiSx during the detection process. Noticeably, quantitative and selective detection of ROS was successfully carried out in vivo. This strategy highlights the potential of chiral nanoassemblies for ROS detection, which opens up a new avenue to develop the toolbox of chiral nanomaterials for biomedical and biological analysis.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>31711292</pmid><doi>10.1021/jacs.9b09360</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-5639-7102</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0002-7863
ispartof Journal of the American Chemical Society, 2019-12, Vol.141 (49), p.19373-19378
issn 0002-7863
1520-5126
language eng
recordid cdi_proquest_miscellaneous_2314035123
source American Chemical Society Publications
title Chiral Core–Shell Upconversion Nanoparticle@MOF Nanoassemblies for Quantification and Bioimaging of Reactive Oxygen Species in Vivo
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T20%3A52%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chiral%20Core%E2%80%93Shell%20Upconversion%20Nanoparticle@MOF%20Nanoassemblies%20for%20Quantification%20and%20Bioimaging%20of%20Reactive%20Oxygen%20Species%20in%20Vivo&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Hao,%20Changlong&rft.date=2019-12-11&rft.volume=141&rft.issue=49&rft.spage=19373&rft.epage=19378&rft.pages=19373-19378&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.9b09360&rft_dat=%3Cproquest_cross%3E2314035123%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2314035123&rft_id=info:pmid/31711292&rfr_iscdi=true