CANet: Cross-Disease Attention Network for Joint Diabetic Retinopathy and Diabetic Macular Edema Grading
Diabetic retinopathy (DR) and diabetic macular edema (DME) are the leading causes of permanent blindness in the working-age population. Automatic grading of DR and DME helps ophthalmologists design tailored treatments to patients, thus is of vital importance in the clinical practice. However, prior...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on medical imaging 2020-05, Vol.39 (5), p.1483-1493 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1493 |
---|---|
container_issue | 5 |
container_start_page | 1483 |
container_title | IEEE transactions on medical imaging |
container_volume | 39 |
creator | Li, Xiaomeng Hu, Xiaowei Yu, Lequan Zhu, Lei Fu, Chi-Wing Heng, Pheng-Ann |
description | Diabetic retinopathy (DR) and diabetic macular edema (DME) are the leading causes of permanent blindness in the working-age population. Automatic grading of DR and DME helps ophthalmologists design tailored treatments to patients, thus is of vital importance in the clinical practice. However, prior works either grade DR or DME, and ignore the correlation between DR and its complication, i.e ., DME. Moreover, the location information, e.g ., macula and soft hard exhaust annotations, are widely used as a prior for grading. Such annotations are costly to obtain, hence it is desirable to develop automatic grading methods with only image-level supervision. In this article, we present a novel cross-disease attention network (CANet) to jointly grade DR and DME by exploring the internal relationship between the diseases with only image-level supervision. Our key contributions include the disease-specific attention module to selectively learn useful features for individual diseases, and the disease-dependent attention module to further capture the internal relationship between the two diseases. We integrate these two attention modules in a deep network to produce disease-specific and disease-dependent features, and to maximize the overall performance jointly for grading DR and DME. We evaluate our network on two public benchmark datasets, i.e ., ISBI 2018 IDRiD challenge dataset and Messidor dataset. Our method achieves the best result on the ISBI 2018 IDRiD challenge dataset and outperforms other methods on the Messidor dataset. Our code is publicly available at https://github.com/xmengli999/CANet . |
doi_str_mv | 10.1109/TMI.2019.2951844 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_2314021461</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8892667</ieee_id><sourcerecordid>2314021461</sourcerecordid><originalsourceid>FETCH-LOGICAL-c436t-35dae090e5ca0211eb6b793e0e3b5a270a642527eadaaed568f3f6006d3710a33</originalsourceid><addsrcrecordid>eNpdkc1rGzEQxUVJady090IgCHrpZV19a5WbcdI0JWmhpNDbMrs7myixV66kpeS_r4zdBHIZHd5vHqP3CPnA2Zxz5j7fXF_OBeNuLpzmtVKvyIxrXVdCq98HZMaErSvGjDgkb1O6Z4wrzdwbcii55UpwNyN3y8V3zKd0GUNK1ZlPCAnpImccsw8jLeLfEB_oECL9FvyY6ZmHFrPv6M8yx7CBfPdIYeyfhWvophVEet7jGuhFhN6Pt-_I6wFWCd_v3yPy68v5zfJrdfXj4nK5uKo6JU2upO4BmWOoO2CCc2xNa51EhrLVICwDo4QWFqEHwF6bepCDKX_speUMpDwin3a-mxj-TJhys_apw9UKRgxTaoTkqhgrwwv68QV6H6Y4lusK5awrCVtdKLajum1EEYdmE_0a4mPDWbNtoSktNNsWmn0LZeVkbzy1a-yfFv7HXoDjHeAR8UmuayeMsfIfPTWKHw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2397910975</pqid></control><display><type>article</type><title>CANet: Cross-Disease Attention Network for Joint Diabetic Retinopathy and Diabetic Macular Edema Grading</title><source>IEEE Electronic Library (IEL)</source><creator>Li, Xiaomeng ; Hu, Xiaowei ; Yu, Lequan ; Zhu, Lei ; Fu, Chi-Wing ; Heng, Pheng-Ann</creator><creatorcontrib>Li, Xiaomeng ; Hu, Xiaowei ; Yu, Lequan ; Zhu, Lei ; Fu, Chi-Wing ; Heng, Pheng-Ann</creatorcontrib><description>Diabetic retinopathy (DR) and diabetic macular edema (DME) are the leading causes of permanent blindness in the working-age population. Automatic grading of DR and DME helps ophthalmologists design tailored treatments to patients, thus is of vital importance in the clinical practice. However, prior works either grade DR or DME, and ignore the correlation between DR and its complication, i.e ., DME. Moreover, the location information, e.g ., macula and soft hard exhaust annotations, are widely used as a prior for grading. Such annotations are costly to obtain, hence it is desirable to develop automatic grading methods with only image-level supervision. In this article, we present a novel cross-disease attention network (CANet) to jointly grade DR and DME by exploring the internal relationship between the diseases with only image-level supervision. Our key contributions include the disease-specific attention module to selectively learn useful features for individual diseases, and the disease-dependent attention module to further capture the internal relationship between the two diseases. We integrate these two attention modules in a deep network to produce disease-specific and disease-dependent features, and to maximize the overall performance jointly for grading DR and DME. We evaluate our network on two public benchmark datasets, i.e ., ISBI 2018 IDRiD challenge dataset and Messidor dataset. Our method achieves the best result on the ISBI 2018 IDRiD challenge dataset and outperforms other methods on the Messidor dataset. Our code is publicly available at https://github.com/xmengli999/CANet .</description><identifier>ISSN: 0278-0062</identifier><identifier>EISSN: 1558-254X</identifier><identifier>DOI: 10.1109/TMI.2019.2951844</identifier><identifier>PMID: 31714219</identifier><identifier>CODEN: ITMID4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Annotations ; attention mechanism ; Biomedical imaging ; Blindness ; Datasets ; Diabetes ; Diabetes mellitus ; diabetic macular edema ; Diabetic retinopathy ; Diseases ; Edema ; Feature extraction ; Hemorrhaging ; joint grading ; Medical imaging ; Modules ; Retinopathy ; Task analysis</subject><ispartof>IEEE transactions on medical imaging, 2020-05, Vol.39 (5), p.1483-1493</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c436t-35dae090e5ca0211eb6b793e0e3b5a270a642527eadaaed568f3f6006d3710a33</citedby><cites>FETCH-LOGICAL-c436t-35dae090e5ca0211eb6b793e0e3b5a270a642527eadaaed568f3f6006d3710a33</cites><orcidid>0000-0002-9315-6527 ; 0000-0003-3871-663X ; 0000-0003-1105-8083 ; 0000-0002-5708-7018 ; 0000-0003-3055-5034</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8892667$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8892667$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31714219$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Xiaomeng</creatorcontrib><creatorcontrib>Hu, Xiaowei</creatorcontrib><creatorcontrib>Yu, Lequan</creatorcontrib><creatorcontrib>Zhu, Lei</creatorcontrib><creatorcontrib>Fu, Chi-Wing</creatorcontrib><creatorcontrib>Heng, Pheng-Ann</creatorcontrib><title>CANet: Cross-Disease Attention Network for Joint Diabetic Retinopathy and Diabetic Macular Edema Grading</title><title>IEEE transactions on medical imaging</title><addtitle>TMI</addtitle><addtitle>IEEE Trans Med Imaging</addtitle><description>Diabetic retinopathy (DR) and diabetic macular edema (DME) are the leading causes of permanent blindness in the working-age population. Automatic grading of DR and DME helps ophthalmologists design tailored treatments to patients, thus is of vital importance in the clinical practice. However, prior works either grade DR or DME, and ignore the correlation between DR and its complication, i.e ., DME. Moreover, the location information, e.g ., macula and soft hard exhaust annotations, are widely used as a prior for grading. Such annotations are costly to obtain, hence it is desirable to develop automatic grading methods with only image-level supervision. In this article, we present a novel cross-disease attention network (CANet) to jointly grade DR and DME by exploring the internal relationship between the diseases with only image-level supervision. Our key contributions include the disease-specific attention module to selectively learn useful features for individual diseases, and the disease-dependent attention module to further capture the internal relationship between the two diseases. We integrate these two attention modules in a deep network to produce disease-specific and disease-dependent features, and to maximize the overall performance jointly for grading DR and DME. We evaluate our network on two public benchmark datasets, i.e ., ISBI 2018 IDRiD challenge dataset and Messidor dataset. Our method achieves the best result on the ISBI 2018 IDRiD challenge dataset and outperforms other methods on the Messidor dataset. Our code is publicly available at https://github.com/xmengli999/CANet .</description><subject>Annotations</subject><subject>attention mechanism</subject><subject>Biomedical imaging</subject><subject>Blindness</subject><subject>Datasets</subject><subject>Diabetes</subject><subject>Diabetes mellitus</subject><subject>diabetic macular edema</subject><subject>Diabetic retinopathy</subject><subject>Diseases</subject><subject>Edema</subject><subject>Feature extraction</subject><subject>Hemorrhaging</subject><subject>joint grading</subject><subject>Medical imaging</subject><subject>Modules</subject><subject>Retinopathy</subject><subject>Task analysis</subject><issn>0278-0062</issn><issn>1558-254X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkc1rGzEQxUVJady090IgCHrpZV19a5WbcdI0JWmhpNDbMrs7myixV66kpeS_r4zdBHIZHd5vHqP3CPnA2Zxz5j7fXF_OBeNuLpzmtVKvyIxrXVdCq98HZMaErSvGjDgkb1O6Z4wrzdwbcii55UpwNyN3y8V3zKd0GUNK1ZlPCAnpImccsw8jLeLfEB_oECL9FvyY6ZmHFrPv6M8yx7CBfPdIYeyfhWvophVEet7jGuhFhN6Pt-_I6wFWCd_v3yPy68v5zfJrdfXj4nK5uKo6JU2upO4BmWOoO2CCc2xNa51EhrLVICwDo4QWFqEHwF6bepCDKX_speUMpDwin3a-mxj-TJhys_apw9UKRgxTaoTkqhgrwwv68QV6H6Y4lusK5awrCVtdKLajum1EEYdmE_0a4mPDWbNtoSktNNsWmn0LZeVkbzy1a-yfFv7HXoDjHeAR8UmuayeMsfIfPTWKHw</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Li, Xiaomeng</creator><creator>Hu, Xiaowei</creator><creator>Yu, Lequan</creator><creator>Zhu, Lei</creator><creator>Fu, Chi-Wing</creator><creator>Heng, Pheng-Ann</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9315-6527</orcidid><orcidid>https://orcid.org/0000-0003-3871-663X</orcidid><orcidid>https://orcid.org/0000-0003-1105-8083</orcidid><orcidid>https://orcid.org/0000-0002-5708-7018</orcidid><orcidid>https://orcid.org/0000-0003-3055-5034</orcidid></search><sort><creationdate>20200501</creationdate><title>CANet: Cross-Disease Attention Network for Joint Diabetic Retinopathy and Diabetic Macular Edema Grading</title><author>Li, Xiaomeng ; Hu, Xiaowei ; Yu, Lequan ; Zhu, Lei ; Fu, Chi-Wing ; Heng, Pheng-Ann</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c436t-35dae090e5ca0211eb6b793e0e3b5a270a642527eadaaed568f3f6006d3710a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Annotations</topic><topic>attention mechanism</topic><topic>Biomedical imaging</topic><topic>Blindness</topic><topic>Datasets</topic><topic>Diabetes</topic><topic>Diabetes mellitus</topic><topic>diabetic macular edema</topic><topic>Diabetic retinopathy</topic><topic>Diseases</topic><topic>Edema</topic><topic>Feature extraction</topic><topic>Hemorrhaging</topic><topic>joint grading</topic><topic>Medical imaging</topic><topic>Modules</topic><topic>Retinopathy</topic><topic>Task analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Li, Xiaomeng</creatorcontrib><creatorcontrib>Hu, Xiaowei</creatorcontrib><creatorcontrib>Yu, Lequan</creatorcontrib><creatorcontrib>Zhu, Lei</creatorcontrib><creatorcontrib>Fu, Chi-Wing</creatorcontrib><creatorcontrib>Heng, Pheng-Ann</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on medical imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li, Xiaomeng</au><au>Hu, Xiaowei</au><au>Yu, Lequan</au><au>Zhu, Lei</au><au>Fu, Chi-Wing</au><au>Heng, Pheng-Ann</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CANet: Cross-Disease Attention Network for Joint Diabetic Retinopathy and Diabetic Macular Edema Grading</atitle><jtitle>IEEE transactions on medical imaging</jtitle><stitle>TMI</stitle><addtitle>IEEE Trans Med Imaging</addtitle><date>2020-05-01</date><risdate>2020</risdate><volume>39</volume><issue>5</issue><spage>1483</spage><epage>1493</epage><pages>1483-1493</pages><issn>0278-0062</issn><eissn>1558-254X</eissn><coden>ITMID4</coden><abstract>Diabetic retinopathy (DR) and diabetic macular edema (DME) are the leading causes of permanent blindness in the working-age population. Automatic grading of DR and DME helps ophthalmologists design tailored treatments to patients, thus is of vital importance in the clinical practice. However, prior works either grade DR or DME, and ignore the correlation between DR and its complication, i.e ., DME. Moreover, the location information, e.g ., macula and soft hard exhaust annotations, are widely used as a prior for grading. Such annotations are costly to obtain, hence it is desirable to develop automatic grading methods with only image-level supervision. In this article, we present a novel cross-disease attention network (CANet) to jointly grade DR and DME by exploring the internal relationship between the diseases with only image-level supervision. Our key contributions include the disease-specific attention module to selectively learn useful features for individual diseases, and the disease-dependent attention module to further capture the internal relationship between the two diseases. We integrate these two attention modules in a deep network to produce disease-specific and disease-dependent features, and to maximize the overall performance jointly for grading DR and DME. We evaluate our network on two public benchmark datasets, i.e ., ISBI 2018 IDRiD challenge dataset and Messidor dataset. Our method achieves the best result on the ISBI 2018 IDRiD challenge dataset and outperforms other methods on the Messidor dataset. Our code is publicly available at https://github.com/xmengli999/CANet .</abstract><cop>United States</cop><pub>IEEE</pub><pmid>31714219</pmid><doi>10.1109/TMI.2019.2951844</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-9315-6527</orcidid><orcidid>https://orcid.org/0000-0003-3871-663X</orcidid><orcidid>https://orcid.org/0000-0003-1105-8083</orcidid><orcidid>https://orcid.org/0000-0002-5708-7018</orcidid><orcidid>https://orcid.org/0000-0003-3055-5034</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0278-0062 |
ispartof | IEEE transactions on medical imaging, 2020-05, Vol.39 (5), p.1483-1493 |
issn | 0278-0062 1558-254X |
language | eng |
recordid | cdi_proquest_miscellaneous_2314021461 |
source | IEEE Electronic Library (IEL) |
subjects | Annotations attention mechanism Biomedical imaging Blindness Datasets Diabetes Diabetes mellitus diabetic macular edema Diabetic retinopathy Diseases Edema Feature extraction Hemorrhaging joint grading Medical imaging Modules Retinopathy Task analysis |
title | CANet: Cross-Disease Attention Network for Joint Diabetic Retinopathy and Diabetic Macular Edema Grading |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T06%3A57%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CANet:%20Cross-Disease%20Attention%20Network%20for%20Joint%20Diabetic%20Retinopathy%20and%20Diabetic%20Macular%20Edema%20Grading&rft.jtitle=IEEE%20transactions%20on%20medical%20imaging&rft.au=Li,%20Xiaomeng&rft.date=2020-05-01&rft.volume=39&rft.issue=5&rft.spage=1483&rft.epage=1493&rft.pages=1483-1493&rft.issn=0278-0062&rft.eissn=1558-254X&rft.coden=ITMID4&rft_id=info:doi/10.1109/TMI.2019.2951844&rft_dat=%3Cproquest_RIE%3E2314021461%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2397910975&rft_id=info:pmid/31714219&rft_ieee_id=8892667&rfr_iscdi=true |