A computational study of hydrogen doping induced metal-to-insulator transition in CaFeO3, SrFeO3, BaFeO3 and SmMnO3
The metal-to-insulator transition (MIT) in rare earth perovskite oxides has drawn significant research interest for decades to unveil the underlying physics and develop novel electronic materials. Recently, chemical doping induced MIT in SmNiO3 has been observed experimentally, with its resistivity...
Gespeichert in:
Veröffentlicht in: | Physical chemistry chemical physics : PCCP 2019, Vol.21 (45), p.25397-25405 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 25405 |
---|---|
container_issue | 45 |
container_start_page | 25397 |
container_title | Physical chemistry chemical physics : PCCP |
container_volume | 21 |
creator | Yao, Shukai Yoo, Pilsun Liao, Peilin |
description | The metal-to-insulator transition (MIT) in rare earth perovskite oxides has drawn significant research interest for decades to unveil the underlying physics and develop novel electronic materials. Recently, chemical doping induced MIT in SmNiO3 has been observed experimentally, with its resistivity changed by eight orders of magnitude. The mechanism of switching from one singly occupied Ni eg orbital to two singly occupied eg orbitals upon doping has been proposed by experimentalists and verified by computation. Here, we tested if this mechanism can be generally applied to other perovskite oxides with non-Ni B site elements. We applied first principles density functional theory (DFT) to study a series of perovskite oxides, CaFeO3, SrFeO3, BaFeO3 and SmMnO3. We investigated the geometry and electronic structures of pure and hydrogen doped oxides. We found that pure CaFeO3, SrFeO3 and BaFeO3 are metallic while pure SmMnO3 has a small band gap of 0.69 eV. Upon hydrogen doping, band gap opening was predicted for all four oxides: HSE06 predicted band gap values of 1.58 eV, 1.40 eV, 1.20 eV and 2.55 eV for H-doped CaFeO3, SrFeO3, BaFeO3 and SmMnO3, respectively. This finding opens up research opportunities for exploring a broader range of materials for MIT to be used in optical and electronic devices. |
doi_str_mv | 10.1039/c9cp04669k |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_2313662720</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2315936121</sourcerecordid><originalsourceid>FETCH-LOGICAL-g319t-62d567852bafdbde2f426b1de0f92f4df8208f2d6549b98c85208bce4ac226783</originalsourceid><addsrcrecordid>eNpdkDtPwzAAhC0EEqWw8AsssTAQ8CNx4rFELSAVZSjMleNHSEnsENtD_z2hRQxMdyd9d8MBcI3RPUaUP0guB5Qyxj9PwAynjCYcFenpn8_ZObjwfocQwhmmM-AXULp-iEGE1lnRQR-i2kNn4Mdeja7RFio3tLaBrVVRagV7HUSXBJe01sdOBDfCMArr25-BiYKlWOmK3sHNeNTHQ4bCKrjpX21FL8GZEZ3XV786B--r5Vv5nKyrp5dysU4ainlIGFEZy4uM1MKoWmliUsJqrDQyfPLKFAQVhiiWpbzmhZxIVNRSp0ISMhXpHNwed4fRfUXtw7ZvvdRdJ6x20W8JxZQxkhM0oTf_0J2L4_THgco4ZZhg-g2IY2l-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2315936121</pqid></control><display><type>article</type><title>A computational study of hydrogen doping induced metal-to-insulator transition in CaFeO3, SrFeO3, BaFeO3 and SmMnO3</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Yao, Shukai ; Yoo, Pilsun ; Liao, Peilin</creator><creatorcontrib>Yao, Shukai ; Yoo, Pilsun ; Liao, Peilin</creatorcontrib><description>The metal-to-insulator transition (MIT) in rare earth perovskite oxides has drawn significant research interest for decades to unveil the underlying physics and develop novel electronic materials. Recently, chemical doping induced MIT in SmNiO3 has been observed experimentally, with its resistivity changed by eight orders of magnitude. The mechanism of switching from one singly occupied Ni eg orbital to two singly occupied eg orbitals upon doping has been proposed by experimentalists and verified by computation. Here, we tested if this mechanism can be generally applied to other perovskite oxides with non-Ni B site elements. We applied first principles density functional theory (DFT) to study a series of perovskite oxides, CaFeO3, SrFeO3, BaFeO3 and SmMnO3. We investigated the geometry and electronic structures of pure and hydrogen doped oxides. We found that pure CaFeO3, SrFeO3 and BaFeO3 are metallic while pure SmMnO3 has a small band gap of 0.69 eV. Upon hydrogen doping, band gap opening was predicted for all four oxides: HSE06 predicted band gap values of 1.58 eV, 1.40 eV, 1.20 eV and 2.55 eV for H-doped CaFeO3, SrFeO3, BaFeO3 and SmMnO3, respectively. This finding opens up research opportunities for exploring a broader range of materials for MIT to be used in optical and electronic devices.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/c9cp04669k</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Density functional theory ; Doping ; Electronic devices ; Electronic materials ; Energy gap ; First principles ; Hydrogen ; Organic chemistry ; Oxides ; Perovskites</subject><ispartof>Physical chemistry chemical physics : PCCP, 2019, Vol.21 (45), p.25397-25405</ispartof><rights>Copyright Royal Society of Chemistry 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4022,27922,27923,27924</link.rule.ids></links><search><creatorcontrib>Yao, Shukai</creatorcontrib><creatorcontrib>Yoo, Pilsun</creatorcontrib><creatorcontrib>Liao, Peilin</creatorcontrib><title>A computational study of hydrogen doping induced metal-to-insulator transition in CaFeO3, SrFeO3, BaFeO3 and SmMnO3</title><title>Physical chemistry chemical physics : PCCP</title><description>The metal-to-insulator transition (MIT) in rare earth perovskite oxides has drawn significant research interest for decades to unveil the underlying physics and develop novel electronic materials. Recently, chemical doping induced MIT in SmNiO3 has been observed experimentally, with its resistivity changed by eight orders of magnitude. The mechanism of switching from one singly occupied Ni eg orbital to two singly occupied eg orbitals upon doping has been proposed by experimentalists and verified by computation. Here, we tested if this mechanism can be generally applied to other perovskite oxides with non-Ni B site elements. We applied first principles density functional theory (DFT) to study a series of perovskite oxides, CaFeO3, SrFeO3, BaFeO3 and SmMnO3. We investigated the geometry and electronic structures of pure and hydrogen doped oxides. We found that pure CaFeO3, SrFeO3 and BaFeO3 are metallic while pure SmMnO3 has a small band gap of 0.69 eV. Upon hydrogen doping, band gap opening was predicted for all four oxides: HSE06 predicted band gap values of 1.58 eV, 1.40 eV, 1.20 eV and 2.55 eV for H-doped CaFeO3, SrFeO3, BaFeO3 and SmMnO3, respectively. This finding opens up research opportunities for exploring a broader range of materials for MIT to be used in optical and electronic devices.</description><subject>Density functional theory</subject><subject>Doping</subject><subject>Electronic devices</subject><subject>Electronic materials</subject><subject>Energy gap</subject><subject>First principles</subject><subject>Hydrogen</subject><subject>Organic chemistry</subject><subject>Oxides</subject><subject>Perovskites</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpdkDtPwzAAhC0EEqWw8AsssTAQ8CNx4rFELSAVZSjMleNHSEnsENtD_z2hRQxMdyd9d8MBcI3RPUaUP0guB5Qyxj9PwAynjCYcFenpn8_ZObjwfocQwhmmM-AXULp-iEGE1lnRQR-i2kNn4Mdeja7RFio3tLaBrVVRagV7HUSXBJe01sdOBDfCMArr25-BiYKlWOmK3sHNeNTHQ4bCKrjpX21FL8GZEZ3XV786B--r5Vv5nKyrp5dysU4ainlIGFEZy4uM1MKoWmliUsJqrDQyfPLKFAQVhiiWpbzmhZxIVNRSp0ISMhXpHNwed4fRfUXtw7ZvvdRdJ6x20W8JxZQxkhM0oTf_0J2L4_THgco4ZZhg-g2IY2l-</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Yao, Shukai</creator><creator>Yoo, Pilsun</creator><creator>Liao, Peilin</creator><general>Royal Society of Chemistry</general><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>2019</creationdate><title>A computational study of hydrogen doping induced metal-to-insulator transition in CaFeO3, SrFeO3, BaFeO3 and SmMnO3</title><author>Yao, Shukai ; Yoo, Pilsun ; Liao, Peilin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g319t-62d567852bafdbde2f426b1de0f92f4df8208f2d6549b98c85208bce4ac226783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Density functional theory</topic><topic>Doping</topic><topic>Electronic devices</topic><topic>Electronic materials</topic><topic>Energy gap</topic><topic>First principles</topic><topic>Hydrogen</topic><topic>Organic chemistry</topic><topic>Oxides</topic><topic>Perovskites</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yao, Shukai</creatorcontrib><creatorcontrib>Yoo, Pilsun</creatorcontrib><creatorcontrib>Liao, Peilin</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yao, Shukai</au><au>Yoo, Pilsun</au><au>Liao, Peilin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A computational study of hydrogen doping induced metal-to-insulator transition in CaFeO3, SrFeO3, BaFeO3 and SmMnO3</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><date>2019</date><risdate>2019</risdate><volume>21</volume><issue>45</issue><spage>25397</spage><epage>25405</epage><pages>25397-25405</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>The metal-to-insulator transition (MIT) in rare earth perovskite oxides has drawn significant research interest for decades to unveil the underlying physics and develop novel electronic materials. Recently, chemical doping induced MIT in SmNiO3 has been observed experimentally, with its resistivity changed by eight orders of magnitude. The mechanism of switching from one singly occupied Ni eg orbital to two singly occupied eg orbitals upon doping has been proposed by experimentalists and verified by computation. Here, we tested if this mechanism can be generally applied to other perovskite oxides with non-Ni B site elements. We applied first principles density functional theory (DFT) to study a series of perovskite oxides, CaFeO3, SrFeO3, BaFeO3 and SmMnO3. We investigated the geometry and electronic structures of pure and hydrogen doped oxides. We found that pure CaFeO3, SrFeO3 and BaFeO3 are metallic while pure SmMnO3 has a small band gap of 0.69 eV. Upon hydrogen doping, band gap opening was predicted for all four oxides: HSE06 predicted band gap values of 1.58 eV, 1.40 eV, 1.20 eV and 2.55 eV for H-doped CaFeO3, SrFeO3, BaFeO3 and SmMnO3, respectively. This finding opens up research opportunities for exploring a broader range of materials for MIT to be used in optical and electronic devices.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/c9cp04669k</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1463-9076 |
ispartof | Physical chemistry chemical physics : PCCP, 2019, Vol.21 (45), p.25397-25405 |
issn | 1463-9076 1463-9084 |
language | eng |
recordid | cdi_proquest_miscellaneous_2313662720 |
source | Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
subjects | Density functional theory Doping Electronic devices Electronic materials Energy gap First principles Hydrogen Organic chemistry Oxides Perovskites |
title | A computational study of hydrogen doping induced metal-to-insulator transition in CaFeO3, SrFeO3, BaFeO3 and SmMnO3 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T00%3A29%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20computational%20study%20of%20hydrogen%20doping%20induced%20metal-to-insulator%20transition%20in%20CaFeO3,%20SrFeO3,%20BaFeO3%20and%20SmMnO3&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Yao,%20Shukai&rft.date=2019&rft.volume=21&rft.issue=45&rft.spage=25397&rft.epage=25405&rft.pages=25397-25405&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/c9cp04669k&rft_dat=%3Cproquest%3E2315936121%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2315936121&rft_id=info:pmid/&rfr_iscdi=true |