A computational study of hydrogen doping induced metal-to-insulator transition in CaFeO3, SrFeO3, BaFeO3 and SmMnO3

The metal-to-insulator transition (MIT) in rare earth perovskite oxides has drawn significant research interest for decades to unveil the underlying physics and develop novel electronic materials. Recently, chemical doping induced MIT in SmNiO3 has been observed experimentally, with its resistivity...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2019, Vol.21 (45), p.25397-25405
Hauptverfasser: Yao, Shukai, Yoo, Pilsun, Liao, Peilin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 25405
container_issue 45
container_start_page 25397
container_title Physical chemistry chemical physics : PCCP
container_volume 21
creator Yao, Shukai
Yoo, Pilsun
Liao, Peilin
description The metal-to-insulator transition (MIT) in rare earth perovskite oxides has drawn significant research interest for decades to unveil the underlying physics and develop novel electronic materials. Recently, chemical doping induced MIT in SmNiO3 has been observed experimentally, with its resistivity changed by eight orders of magnitude. The mechanism of switching from one singly occupied Ni eg orbital to two singly occupied eg orbitals upon doping has been proposed by experimentalists and verified by computation. Here, we tested if this mechanism can be generally applied to other perovskite oxides with non-Ni B site elements. We applied first principles density functional theory (DFT) to study a series of perovskite oxides, CaFeO3, SrFeO3, BaFeO3 and SmMnO3. We investigated the geometry and electronic structures of pure and hydrogen doped oxides. We found that pure CaFeO3, SrFeO3 and BaFeO3 are metallic while pure SmMnO3 has a small band gap of 0.69 eV. Upon hydrogen doping, band gap opening was predicted for all four oxides: HSE06 predicted band gap values of 1.58 eV, 1.40 eV, 1.20 eV and 2.55 eV for H-doped CaFeO3, SrFeO3, BaFeO3 and SmMnO3, respectively. This finding opens up research opportunities for exploring a broader range of materials for MIT to be used in optical and electronic devices.
doi_str_mv 10.1039/c9cp04669k
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_2313662720</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2315936121</sourcerecordid><originalsourceid>FETCH-LOGICAL-g319t-62d567852bafdbde2f426b1de0f92f4df8208f2d6549b98c85208bce4ac226783</originalsourceid><addsrcrecordid>eNpdkDtPwzAAhC0EEqWw8AsssTAQ8CNx4rFELSAVZSjMleNHSEnsENtD_z2hRQxMdyd9d8MBcI3RPUaUP0guB5Qyxj9PwAynjCYcFenpn8_ZObjwfocQwhmmM-AXULp-iEGE1lnRQR-i2kNn4Mdeja7RFio3tLaBrVVRagV7HUSXBJe01sdOBDfCMArr25-BiYKlWOmK3sHNeNTHQ4bCKrjpX21FL8GZEZ3XV786B--r5Vv5nKyrp5dysU4ainlIGFEZy4uM1MKoWmliUsJqrDQyfPLKFAQVhiiWpbzmhZxIVNRSp0ISMhXpHNwed4fRfUXtw7ZvvdRdJ6x20W8JxZQxkhM0oTf_0J2L4_THgco4ZZhg-g2IY2l-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2315936121</pqid></control><display><type>article</type><title>A computational study of hydrogen doping induced metal-to-insulator transition in CaFeO3, SrFeO3, BaFeO3 and SmMnO3</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Yao, Shukai ; Yoo, Pilsun ; Liao, Peilin</creator><creatorcontrib>Yao, Shukai ; Yoo, Pilsun ; Liao, Peilin</creatorcontrib><description>The metal-to-insulator transition (MIT) in rare earth perovskite oxides has drawn significant research interest for decades to unveil the underlying physics and develop novel electronic materials. Recently, chemical doping induced MIT in SmNiO3 has been observed experimentally, with its resistivity changed by eight orders of magnitude. The mechanism of switching from one singly occupied Ni eg orbital to two singly occupied eg orbitals upon doping has been proposed by experimentalists and verified by computation. Here, we tested if this mechanism can be generally applied to other perovskite oxides with non-Ni B site elements. We applied first principles density functional theory (DFT) to study a series of perovskite oxides, CaFeO3, SrFeO3, BaFeO3 and SmMnO3. We investigated the geometry and electronic structures of pure and hydrogen doped oxides. We found that pure CaFeO3, SrFeO3 and BaFeO3 are metallic while pure SmMnO3 has a small band gap of 0.69 eV. Upon hydrogen doping, band gap opening was predicted for all four oxides: HSE06 predicted band gap values of 1.58 eV, 1.40 eV, 1.20 eV and 2.55 eV for H-doped CaFeO3, SrFeO3, BaFeO3 and SmMnO3, respectively. This finding opens up research opportunities for exploring a broader range of materials for MIT to be used in optical and electronic devices.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/c9cp04669k</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Density functional theory ; Doping ; Electronic devices ; Electronic materials ; Energy gap ; First principles ; Hydrogen ; Organic chemistry ; Oxides ; Perovskites</subject><ispartof>Physical chemistry chemical physics : PCCP, 2019, Vol.21 (45), p.25397-25405</ispartof><rights>Copyright Royal Society of Chemistry 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4022,27922,27923,27924</link.rule.ids></links><search><creatorcontrib>Yao, Shukai</creatorcontrib><creatorcontrib>Yoo, Pilsun</creatorcontrib><creatorcontrib>Liao, Peilin</creatorcontrib><title>A computational study of hydrogen doping induced metal-to-insulator transition in CaFeO3, SrFeO3, BaFeO3 and SmMnO3</title><title>Physical chemistry chemical physics : PCCP</title><description>The metal-to-insulator transition (MIT) in rare earth perovskite oxides has drawn significant research interest for decades to unveil the underlying physics and develop novel electronic materials. Recently, chemical doping induced MIT in SmNiO3 has been observed experimentally, with its resistivity changed by eight orders of magnitude. The mechanism of switching from one singly occupied Ni eg orbital to two singly occupied eg orbitals upon doping has been proposed by experimentalists and verified by computation. Here, we tested if this mechanism can be generally applied to other perovskite oxides with non-Ni B site elements. We applied first principles density functional theory (DFT) to study a series of perovskite oxides, CaFeO3, SrFeO3, BaFeO3 and SmMnO3. We investigated the geometry and electronic structures of pure and hydrogen doped oxides. We found that pure CaFeO3, SrFeO3 and BaFeO3 are metallic while pure SmMnO3 has a small band gap of 0.69 eV. Upon hydrogen doping, band gap opening was predicted for all four oxides: HSE06 predicted band gap values of 1.58 eV, 1.40 eV, 1.20 eV and 2.55 eV for H-doped CaFeO3, SrFeO3, BaFeO3 and SmMnO3, respectively. This finding opens up research opportunities for exploring a broader range of materials for MIT to be used in optical and electronic devices.</description><subject>Density functional theory</subject><subject>Doping</subject><subject>Electronic devices</subject><subject>Electronic materials</subject><subject>Energy gap</subject><subject>First principles</subject><subject>Hydrogen</subject><subject>Organic chemistry</subject><subject>Oxides</subject><subject>Perovskites</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpdkDtPwzAAhC0EEqWw8AsssTAQ8CNx4rFELSAVZSjMleNHSEnsENtD_z2hRQxMdyd9d8MBcI3RPUaUP0guB5Qyxj9PwAynjCYcFenpn8_ZObjwfocQwhmmM-AXULp-iEGE1lnRQR-i2kNn4Mdeja7RFio3tLaBrVVRagV7HUSXBJe01sdOBDfCMArr25-BiYKlWOmK3sHNeNTHQ4bCKrjpX21FL8GZEZ3XV786B--r5Vv5nKyrp5dysU4ainlIGFEZy4uM1MKoWmliUsJqrDQyfPLKFAQVhiiWpbzmhZxIVNRSp0ISMhXpHNwed4fRfUXtw7ZvvdRdJ6x20W8JxZQxkhM0oTf_0J2L4_THgco4ZZhg-g2IY2l-</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Yao, Shukai</creator><creator>Yoo, Pilsun</creator><creator>Liao, Peilin</creator><general>Royal Society of Chemistry</general><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>2019</creationdate><title>A computational study of hydrogen doping induced metal-to-insulator transition in CaFeO3, SrFeO3, BaFeO3 and SmMnO3</title><author>Yao, Shukai ; Yoo, Pilsun ; Liao, Peilin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g319t-62d567852bafdbde2f426b1de0f92f4df8208f2d6549b98c85208bce4ac226783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Density functional theory</topic><topic>Doping</topic><topic>Electronic devices</topic><topic>Electronic materials</topic><topic>Energy gap</topic><topic>First principles</topic><topic>Hydrogen</topic><topic>Organic chemistry</topic><topic>Oxides</topic><topic>Perovskites</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yao, Shukai</creatorcontrib><creatorcontrib>Yoo, Pilsun</creatorcontrib><creatorcontrib>Liao, Peilin</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yao, Shukai</au><au>Yoo, Pilsun</au><au>Liao, Peilin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A computational study of hydrogen doping induced metal-to-insulator transition in CaFeO3, SrFeO3, BaFeO3 and SmMnO3</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><date>2019</date><risdate>2019</risdate><volume>21</volume><issue>45</issue><spage>25397</spage><epage>25405</epage><pages>25397-25405</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>The metal-to-insulator transition (MIT) in rare earth perovskite oxides has drawn significant research interest for decades to unveil the underlying physics and develop novel electronic materials. Recently, chemical doping induced MIT in SmNiO3 has been observed experimentally, with its resistivity changed by eight orders of magnitude. The mechanism of switching from one singly occupied Ni eg orbital to two singly occupied eg orbitals upon doping has been proposed by experimentalists and verified by computation. Here, we tested if this mechanism can be generally applied to other perovskite oxides with non-Ni B site elements. We applied first principles density functional theory (DFT) to study a series of perovskite oxides, CaFeO3, SrFeO3, BaFeO3 and SmMnO3. We investigated the geometry and electronic structures of pure and hydrogen doped oxides. We found that pure CaFeO3, SrFeO3 and BaFeO3 are metallic while pure SmMnO3 has a small band gap of 0.69 eV. Upon hydrogen doping, band gap opening was predicted for all four oxides: HSE06 predicted band gap values of 1.58 eV, 1.40 eV, 1.20 eV and 2.55 eV for H-doped CaFeO3, SrFeO3, BaFeO3 and SmMnO3, respectively. This finding opens up research opportunities for exploring a broader range of materials for MIT to be used in optical and electronic devices.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/c9cp04669k</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1463-9076
ispartof Physical chemistry chemical physics : PCCP, 2019, Vol.21 (45), p.25397-25405
issn 1463-9076
1463-9084
language eng
recordid cdi_proquest_miscellaneous_2313662720
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Density functional theory
Doping
Electronic devices
Electronic materials
Energy gap
First principles
Hydrogen
Organic chemistry
Oxides
Perovskites
title A computational study of hydrogen doping induced metal-to-insulator transition in CaFeO3, SrFeO3, BaFeO3 and SmMnO3
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T00%3A29%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20computational%20study%20of%20hydrogen%20doping%20induced%20metal-to-insulator%20transition%20in%20CaFeO3,%20SrFeO3,%20BaFeO3%20and%20SmMnO3&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Yao,%20Shukai&rft.date=2019&rft.volume=21&rft.issue=45&rft.spage=25397&rft.epage=25405&rft.pages=25397-25405&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/c9cp04669k&rft_dat=%3Cproquest%3E2315936121%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2315936121&rft_id=info:pmid/&rfr_iscdi=true